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ABSTRACT
Providing suitable recommendations is of vital importance to im-
prove the user satisfaction of music recommender systems. Here,
users often listen to the same track repeatedly and appreciate rec-
ommendations of the same song multiple times. Thus, accounting
for users’ relistening behavior is critical for music recommender
systems. In this paper, we describe a psychology-informed approach
to model and predict music relistening behavior that is inspired
by studies in music psychology, which relate music preferences to
human memory. We adopt a well-established psychological theory
of human cognition that models the operations of human memory,
i.e., Adaptive Control of Thought—Rational (ACT-R). In contrast to
prior work, which uses only the base-level component of ACT-R,
we utilize five components of ACT-R, i.e., base-level, spreading, par-
tial matching, valuation, and noise, to investigate the effect of five
factors on music relistening behavior: (i) recency and frequency of
prior exposure to tracks, (ii) co-occurrence of tracks, (iii) the similar-
ity between tracks, (iv) familiarity with tracks, and (v) randomness
in behavior. On a dataset of 1.7 million listening events from Last.fm,
we evaluate the performance of our approach by sequentially pre-
dicting the next track(s) in user sessions. We find that recency
and frequency of prior exposure to tracks is an effective predictor
of relistening behavior. Besides, considering the co-occurrence of
tracks and familiarity with tracks further improves performance
in terms of R-precision. We hope that our work inspires future
research on the merits of considering cognitive aspects of memory
retrieval to model and predict complex user behavior.
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1 INTRODUCTION AND RESEARCH
CONTEXT

Music recommender systems (MRS) [22] are nowadays employed
in many use cases, such as automatic playlist generation, next-track
recommendation, context-aware music recommendation, and even
in the creative process of music production [23]. Providing useful
music recommendations is a challenging task due to various aspects
such as the variability in the purpose of music consumption, incon-
clusive and insufficient user feedback, or situational and contextual
aspects that influence a user’s current music preference [12, 24].
Besides, users of MRS show a tendency to relisten to songs, which
means they appreciate recommendations of the same song multiple
times [3, 25], which is in stark contrast to movie or product recom-
mendation systems, where users typically do not prefer repeated
recommendations [21, 24].

In this work, we introduce a novel psychology-informed ap-
proach to model and predict music relistening behavior of tracks.
Our work is inspired by related work on psychology-informed rec-
ommender systems [13], and studies in music psychology, which
find that music preferences are biased by human memory: user
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studies showed that repeated exposure increases recognition and
positive attitude towards music [18].

While several works have been proposed to model repeated
consumption of items, such as temporal point processes [26], fac-
torization models [20] or neural networks [21], to the best of our
knowledge, they do not incorporate underlying cognitive processes
of human behavior into their approaches.

In our work, we exploit a theory about human cognition, i.e.,
the cognitive architecture Adaptive Control of Thought—Rational
(ACT-R) [1], and investigate the utility of its declarative memory
module for the task at hand. The declarative memory module of
ACT-R stores and retrieves information and consists of separate
components. In contrast to prior work, which uses the base-level
component to model predict user preferences in various domains
(e.g., [9–12, 14]), we investigate the utility of five components, i.e.,
(i) base-level, (ii) spreading, (iii) partial matching, (iv) valuation,
and (v) noise component, in a next track prediction scenario. These
components enable us to investigate the effect of various factors on
track relistening behavior, i.e., (i) recency and frequency of prior
exposure to tracks, (ii) co-occurrence of tracks, (iii) the similarity
between tracks, (iv) familiarity with tracks, and (v) randomness in
behavior. To that end, we sequentially simulate track predictions
for the next single and remaining track in user sessions considering
their previous music consumption on a subset of a publicly avail-
able dataset, i.e., the LFM-2b dataset [15]. Our experiments show
that recency of prior exposure to tracks is an effective predictor of
relistening behavior in terms of R-precision; adding co-occurrence
and familiarity in the model further improves the prediction per-
formance.

Summing up, our main contributions are1: (1) we propose a novel
approach of using the declarative memory module within the ACT-
R framework to model and predict music relistening behavior, (2)
we investigate and discuss the merit of all five declarative mem-
ory components of ACT-R in light of what aspects of relistening
behavior they let us model.

2 ACT-R COMPONENTS
Our work is based on the declarative memory part of the cogni-
tive ACT-R framework [1]. In ACT-R, the activation function for a
particular chunk i (which in the context of recommender systems
represents an item) is defined by the sum of individual compo-
nents [2] given by the equation

Ai = Bi + Si + Pi +Vi + ϵi (1)

where Bi represents the base-level component, Si the spreading
component, Pi the partial matching component, and Vi the val-
uation component. In addition, ϵi accounts for the noise in the
activation. The predictions consider all items in a user’s music lis-
tening history ranked by the activation term Ai . We regularize the
results using the softmax function

so f tmax(xi ) =
exp(xi )∑

x j ∈Iu exp(x j )
(2)

1 The code is openly available at https://github.com/socialcomplab/recsys21-
relistening-actr

As a consequence, the sum of all values xi assigned to candidate
items Iu , i.e., items in the user history, is 1. This avoids one com-
ponent dominating the others, while elevating each component’s
top items. In the following, we describe each component in more
detail.

Base-level component. The base-level component models item
occurrences, considering both their recency and frequency. The
component requires a list of tuples (item, timestamp) extracted
from the user history as input. Its activation is defined by the base-
level learning equation [10] given by

Bi = so f tmax
©«
n∑
j=1

(tr ef − ti j )
−d ª®¬ (3)

where tr ef represents the reference timestamp, i.e., the timestamp
of the prediction, and ti j represents the timestamp of the j-th in-
teraction out of n total interactions on item i by the user. The time
decay factor d models the forgetting of item interactions and thus
balances recency and frequency of occurrences.

The base-level component can approximate, depending on the
setting of the parameter d , both a user-based most popular (in
the case of frequency) or a user-based most recent (in the case of
recency) algorithm. More specifically, a base-level component with
no decay, i.e., d = 0, is equivalent to a user-based most popular
recommender, while a most recent approach can be approximated
arbitrarily close with a very high decay of the base-level component,
i.e., d → ∞.

Spreading component. The spreading component models item
co-occurrences and considers (item, session) tuples from the user
history as input. The component spreads its activation among items
using contextual information, i.e., sessions. Thus, it learns to asso-
ciate items with each other that appear in the same session, which
is modeled using probabilities. Specifically, the spreading activa-
tion [7] is defined by

Si = so f tmax

(
P(i ∈ Cj )

P(i)

)
(4)

where P(i) represents the probability of item i appearing over all
contexts, i.e., past user sessions. P(i ∈ Cj ) represents the probability
of item i appearing in context Cj . We define the last item in the
user history as the context item j , and the contextCj as all sessions
where the context item j appears. In short, the spreading component
predicts items co-occurring often with the most recent item, while
also penalizing overall frequent items. Since frequent occurrences
of an item in sessions also lead to high co-occurrences with any
other item, this penalty is necessary.

Partial matching component. The partial matching compo-
nent captures similarities between the items using a list of features.
The input tuples are a set (as multiple interactions on the same items
do not change the result) and have the form (item, f1, f2, . . . , fm ),
where each fx is an entry of the feature vector of fixed lengthm.
These features need to be extracted from the data associated with
a given item. The activation is then simply defined by a similarity
function Pi = so f tmax (sim(i, j)) between the candidate item i and
the context item j, which again is the last item in the user history.
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For the similarity function sim(), we use the dot product. This ap-
proach is equivalent to a content-based item-to-item recommender,
i.e., predicting similar items to those in the target user’s profile.

Valuation component.The valuation componentwas proposed
by [8] and models core affect. Instead of assigning affect, e.g., emo-
tions, to items directly, it defines the affective value as a learned
parameter by a subject through interactions with stimuli [8]. The
parameter uses previous interactions and their associated rewards
to estimate the valuation of an item. Specifically, the valuation is
defined by the update rule

Vi (n) = Vi (n − 1) + α(Ri (n) −Vi (n − 1)) (5)

whereVi (n) specifies the valuation and Ri (n) the associated reward
at the n-th interaction with a learning rate of α . As a starting point,
we set Vi (0) = 0. As input, the component uses an ordered list (due
to the order affecting the update rule) in the form of (item, reward).
Thus, we extract the reward directly from the input derived from
other properties. For music preferences, we can derive the reward
from the duration of a listening event, e.g., total time or ratio the
track was listened to. The activation of the valuation is defined
by Vi = so f tmax (Vi (n)) where Vi (n) is calculated by iteratively
applying the update rule.

In the simplest case, it applies the familiarity principle, i.e., expo-
sure to an item leads to an increase of preference, which is achieved
by setting Ri (n) = 1 for all interactions. Hence, the component
equals an approach that predicts the most popular items of a user.
This result could be achieved in a computationally less expensive
way by just summing the rewards. However, if negative feedback
is incorporated or the rewards differ, then this no longer holds, as
the more recent rewards play a bigger role in the valuation term.

Noise. Noise accounts for randomness in behavior in the overall
activation function. Moreover, random predictions are often used as
the most basic baseline in recommender systems. The activation is
given by ϵi = so f tmax (rnд()) with rnд() being a random number
generator. On its own, it returns a random item from the list of
possible items, i.e., candidate items from the user history. Hence, it
takes just a set of (item) tuples as input.

3 EXPERIMENTAL SETUP

Dataset. Our dataset is a subsample of the LFM-2b dataset2 [15]
from 2019. To reduce the computational demand, we perform strat-
ified sampling3 and create a subset of 150 users with 1, 686, 296
listening events (LEs). Thus, our dataset contains 11, 242 LEs per
user on average. The dataset contains 355, 464 unique tracks, i.e., 5
LEs on average per track. This small number of average track LEs is
explained by the skewed distribution with the most popular track
being listened to 1, 776 times, whereas most tracks appear in the
long tail, e.g., 158, 238 tracks only appear once in the dataset. This
phenomenon outlines the utility of predicting relistening behavior
in this dataset as users tend to listen to the same tracks often, i.e.,
the minority of tracks being responsible for the majority of LEs. The

2http://www.cp.jku.at/datasets/LFM-2b/
3Based on the distribution, we empirically excluded users with less than 1, 000 and
more than 30, 000 listening events and assigned the remaining users to 10 equal sized
bins depending on the number of listening events.

prevalence of relistening becomes even more evident considering
individual users, who, on average, relisten to previous tracks 66%
of the time and to a single track 111 times.

We enrich the dataset with session information derived from the
timestamps of interactions, and with information of user-generated
tags and duration of tracks. Sessions are inferred based on the
gaps between LEs, with sessions corresponding to sequences of
LEs containing gaps of at most 30 minutes. This is an established
approach for session extraction [6, 17] and results in 96, 156 user
sessions with on average 18 LEs per session. The tags and duration
of tracks are collected from the Last.fm API4. Note that not every
track has tags or duration associated with it. As a result, 12, 434 LEs
are missing tag information and 108, 210 LEs are missing duration
information.

Evaluation Protocol. For each user, we shift a sliding window
of one week considering past LEs over all the LEs (including LEs of
non-relistened tracks) in the user’s listening history, i.e., hop size
equals 1 LE. Then, we predict the remaining tracks of the current
session, i.e., the session from the most recent track. Using this
procedure, we simulate |Q | = 811, 025 predictions. Considering
a fixed time interval instead of the whole user history has the
benefit of avoiding scaling issues, while predicting only tracks
in the current session provides a realistic prediction scenario. To
evaluate the performance, we use the R-precision metric with R
being the number of distinct tracks in the remainder of the session
given by

R − prec =
1
|Q |

∑
q∈Q

r

R
(6)

with r being the number of relevant tracks evaluated over all gen-
erated predictions q ∈ Q . Hence, it captures the ratio of correctly
predicted tracks in user sessions, i.e., the precision and recall at R.

To contrast this metric, we also evaluate the performance for
the next track prediction using the hitrate metric. Given the top
predicted track and the next track in the user session, a hit is recog-
nized if the top and next coincide and a miss otherwise. The overall
hitrate, i.e., Next-HR, is given by averaging the number of observed
hits over all possible hits.

Algorithm Configurations. To configure the decay parameter
of the Base-level component and in line with previous studies [12],
we analyze the relistening behavior using a log-log plot as shown
in Figure 1. We observe a good fit for a power law distribution of
relistening behavior, i.e., linear fit in the log-log space. Thus, we
conjecture that the Base-level component, which directly models
the decay of such behavior, should already provide good results.
We choose to evaluate the component on three configurations, i.e.,
using the default parameter of d = 0.5 of the ACT-R framework,
the parameter fitted to the LEs of 2019 with d = 1.737, and the
parameter fitted to the one week interval with d = 0.86.

The Valuation component is evaluated deriving the reward from
the listening duration compared to the track duration by assigning
either an always positive reward equal to the listening ratio or
mapping it to discrete values using −1 for <= 33%, 1 for >= 66%,
and 0 otherwise. Additionally, we configure it to be equivalent to a
4https://www.last.fm/api/show/track.getTopTags for tags and https://www.last.fm/
api/show/track.getInfo for duration.
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Figure 1: Relistening log-log plot of LEs in 2019. Blue dots correspond to value
counts of relistening behaviors in hours. Relistening events follow a power
law distribution, i.e., have an exponential drop-off in time. The solid orange
line (longer, top) is fitted on all LEs in 2019. It provides a good fit of R2 = 0.801
and has a slope of −1.737. We observe an arch at the end of the scale, which
we regard as an artifact of filtering by year (i.e., longer relistening behaviors
are cut-off). Hence, we also fitted a line considering only shorter relistening
behaviors of one week, which is displayed in red (bottom, dashed). This line
serves as an estimate for our evaluation protocol and has a slightly better fit of
R2 = 0.811 and a more moderate slope of −0.860. The spikes at certain intervals
show that the relistening behavior follows some periodicity (e.g., after 1 day).
One peak is right at the beginning as people tend to relisten the same track
within a short interval (e.g., immediate relistening).

R- Next-
Algorithm prec HR

TransProb .03839 .15907
Partial Matching .03895 .01320
Noise .03996 .00289
Valuation(discrete) .04751 .00533
Valuation(ratio) .05987 .01042
Valuation(MP) .08436 .01477
Spreading .09235 .02117
Base-level(2019) .09903 .03200
ACT-R(B,V) .10069 .02416
MostRecent .10167 .05189
Base-level(default) .10380 .02451
Base-level(week) .10489 .02883
ACT-R(S,V) .11009 .02998
ACT-R(B,S) .11042 .02972
ACT-R(B,S,V) .11119 .02961

Table 1: R-precision of 811, 025 predictions
per algorithms on a stratified sample of 150
users (R-prec) and next track hitrate (Next-
HR). Base-level is the strongest individual
component; combining components (ACT-R
with base-level (B), valuation (V), spreading
(S)) improves the results. Green shading indi-
cates relative performance.

user-based most popular (MP) approach by setting the reward to 1
for all LEs.

For the Partial Matching component, we use the user-generated
tags for a particular track from which a feature vector is extracted
by computing the mean across the tags’ word embedding repre-
sentation. To reduce computational power, we apply Principal
Component Analysis as a method for dimensionality reduction
to the pre-trained Word2Vec [16] from Google News, whose 300
dimensions were reduced to 1005. Finally, the Spreading compo-
nent does not require any parameters. Similarly, there are no pa-
rameters for the simulation of Noise, as it just predicts random
tracks.

For the combination of the ACT-R components, we use the most
basic version of each component and denote it as letters, i.e., B for
base-level with the default value, S for spreading, and V for valua-
tion with the most popular configuration6. We also included two
non-ACT-R approaches in our evaluation for comparison. To con-
trast the Spreading component, we use contiguous sequential pat-
tern mining [19] to estimate the transition probability (TransProb)
given a reference track. Furthermore, we use an algorithm that
predicts the MostRecent tracks in the user history.

5We experimented with other content extraction methods with no avail.
6Due to the weak performance, we omitted including the partial matching component
and noise.

4 EXPERIMENTAL RESULTS

Prediction Performance. Table 1 reports the prediction perfor-
mance sorted by R-precision. We refer to the algorithms by their
names and their configurations (in parentheses). Base-level(week) is
the best performing component in terms of R-precision, which we
attribute to the good fit of the power law distribution to the relisting
behavior in Figure 1. Base-level(default) is a close second, which
demonstrates its applicability even without estimating the decay
parameter. In comparison, Base-level(2019) performs worse, which
hints at the discrepancy between the shorter interval of the evalua-
tion protocol and all LEs in 2019. Notably, MostRecent provides a
strong baseline, which is also indicated by the left-most data point
in Figure 1 that displays an above-average relistening behavior for
recent tracks. Note that neither a focus on short nor long-term
memory has a clear advantage over more balanced approaches that
fit the data.

The Spreading and Valuation components have a lower perfor-
mance, whereas, Partial Matching and Noise seem unsuited for the
task. While TransProb is unable to predict the majority of remain-
ing tracks in a session, it has remarkably the best performance on
predicting the next single track. Besides, most other algorithms
perform similarly well on this task, with the notable exceptions of
MostRecent performing better and Noise performing worst. Here,
we also observe that Partial Matching, while still under-performing,
performs better than random in this regard. We suspect that the
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low performance of Partial Matching is partly explained due to
missing tags in the dataset, but also the result of considering tags
alone is insufficient for the task, especially when predicting longer
sequences.

Comparing the configuration of Valuation, MP has the best per-
formance of the three, while discrete has the lowest. This observa-
tion is more prominent considering the Next-HR metric and can
be explained by the strong performance of MostRecent and the in-
fluence of the last, i.e., the most recent, update step on the final
valuation term. Hence, assigning low or negative rewards on recent
tracks has a detrimental effect when predicting the next track(s) in
a sequence.

Considering the combined models, we observe that three of the
four ACT-R combinations perform better in terms of R-precision
than all individual components. This observation outlines the util-
ity of incorporating multiple cognitive processes for predictions.
Notably, ACT-R(S,V) outperforms the Base-level components with-
out including the component itself. Hence, while Valuation and
Spreading alone only provide mediocre performance, combining
them leads to effective predictions. Similar to how Base-level(2019)
is ill-fitted, ACT-R(B,V) leads to a drop that could be the result of
a dominance of popular tracks, which are considered by both the
Base-level and Valuation component. In comparison, ACT-R(B,S)
does not suffer such issue, as the Spreading component explicitly
penalizes occurrence alone. Finally, ACT-R(B,S,V) achieves the high-
est results as the three components seem to balance each other, i.e.,
the addition of the Spreading component counteracts the dominance
of popularity present in ACT-R(B,V).

Estimating Component Weights. In addition to naively com-
bining the components by just adding their activation terms, we
explore the applicability of weighted combinations. We evaluate
the impact of the three best performing components, i.e., Base-
level(week), Spreading, and Valuation(MP), on the overall outcome
using linear models to weight their activation terms with respect
to tracks in the remaining session7 on 10% of the users. Thus, the
altered activation equation becomes Ai = b · Bi + s · Si +v ·Vi with
the weights b, s , and v being estimated by the model. In line with
the results in Table 1, linear regression models assign the highest
weights to Base-level(week) and the lowest to Valuation(MP). Con-
sidering for instance the linear regression model without fitting
an intercept, the learned coefficients are Base-level(week) = 0.34,
Spreadinд = 0.26, and Valuation(MP) = 0.18. Evaluating the per-
formance of the weighted combinations does, however, not lead to
an increase compared to ACT-R(B,S,V). Moreover, the results are vir-
tually identical to ACT-R(S,V). This phenomenon can be explained
when fitting an intercept, as this leads to a slightly negative fac-
tor of Valuation(MP) = −0.05 without altering the other factors
substantially (i.e., Spreadinд = 0.26 and Base-level(week) = 0.35).
Enforcing a positivity constraint would then nullify the valuation
term. This suggests that the valuation term is mostly accounting for
the bias, i.e., the fitted intercept, in the model and leads to intuitive
results as Valuation(MP) scores the most popular tracks highest.
Overall, the results indicate that Equation 1, i.e., without weights,
is sufficient for predicting music relisting behavior.
7We assign a 1 to tracks in remaining session and 0 otherwise. Recall that activation
terms lie also in the interval [0, 1].

5 CONCLUSION
In this paper, we described a psychology-informed approach to
model and predict music relistening behavior based on the declara-
tive module of the ACT-R theory. ACT-R consists of several compo-
nents, i.e., base-level, spreading, partial matching, valuation, and
noise, each corresponding to different aspects of memory processes
such as recency prior exposure to an item or the familiarity of items.
We evaluated our approach on a subset of the LFM-2b dataset by se-
quentially predicting track relisting from previous listening events
of a user. Our results show that cognitive aspects of memory re-
trieval are effective predictors of relistening behavior. Specifically,
the recency and frequency of prior exposure as modeled by the
base-level component result in the highest predictive performance
of individual components. Besides, we find even more effective
combinations by adding spreading and valuation that model co-
occurrence and familiarity, respectively. Thus, our work emphasizes
the consideration of the whole complexity of user behavior and
their underlying cognitive decision-making processes in music pre-
dictions.

As a limitation, we recognize that we consider user behavior
predictions through the lens of a single yet popular framework from
psychology. Also, we evaluate the framework on a single dataset
from the music domain on a small number of users (i.e., 150 users
with approx. 1.7 Mio. LEs).

In the future, we aim to expand the scope of the experiments by
considering more datasets from different domains. Also, we plan to
integrate content information such as lyrics via partial matching
or other hybrid approaches [4, 5], rather than only considering
interactions. Finally, we see our work not as a replacement, but as
a complement for existing approaches, and we will research ways
to integrate our findings into classic music recommender systems.
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