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Abstract

This article contributes to a more adequate modelling of emotions encoded in speech, by

addressing four fallacies prevalent in traditional affective computing: First, studies concen-

trate on few emotions and disregard all other ones (‘closed world’). Second, studies use

clean (lab) data or real-life ones but do not compare clean and noisy data in a comparable

setting (‘clean world’). Third, machine learning approaches need large amounts of data;

however, their performance has not yet been assessed by systematically comparing differ-

ent approaches and different sizes of databases (‘small world’). Fourth, although human

annotations of emotion constitute the basis for automatic classification, human perception

and machine classification have not yet been compared on a strict basis (‘one world’).

Finally, we deal with the intrinsic ambiguities of emotions by interpreting the confusions

between categories (‘fuzzy world’). We use acted nonsense speech from the GEMEP cor-

pus, emotional ‘distractors’ as categories not entailed in the test set, real-life noises that

mask the clear recordings, and different sizes of the training set for machine learning. We

show that machine learning based on state-of-the-art feature representations (wav2vec2)

is able to mirror the main emotional categories (‘pillars’) present in perceptual emotional

constellations even in degradated acoustic conditions.

Introduction

An important goal of affective computing is to mirror humans’ perception of emotions – in

the words of R. Picard, developing machines that “recognize human emotion, ideally at the
same level that people can” [1, p. 56]. Yet, this is difficult to evaluate due to the intrinsic prob-

lems of emotion processing, such as the inherent subjectivity of emotions or the unrealistically

restricted number of emotion classes typically used in Speech Emotion Recognition (SER). We

will discuss the limitations of (most of) the present-day state-of-the-art approaches towards

SER with the metaphor of the ‘five worlds’. We want to go beyond four of these worlds; the

first of them we have to live with (cf. Fig 1).
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(i) The fuzzy world: In automatic speech recognition (ASR), we can assume a sort of ground

truth: We can transfer acoustics onto written text and reconstruct the blanks words are sur-

rounded with in written text. The acoustic ground truth can be blurred (variants, noise,

slurred pronunciation, and alikes) but it can be disambiguated with the help of phonotac-

tics, lexicon, and syntax, implicitly modelled as well within deep learning (DL) approaches.

All this does not exist for emotions. We can ask the speakers which emotions they wanted

to produce; by that, they assess their own emotions post festum, and this distorts the ‘refer-

ence’ in similar ways as any assessment by others—even by experts—does. There is no clear

emotional denotation—emotions per se are constituted by connotations and can be mixed

and/or weak. Thus, any gold standard cannot be determined unequivocally—let alone a

ground truth. Furthermore, the very nature of emotion is multi-modal, and within SER, it

is well established that arousal can be assessed within acoustics; in contrast, valence is pre-

dominantly constituted by linguistics/semantics, e. g., within sentiment analysis [2]. In

SER, research on emotion categories concentrates on how good they are classified; confu-

sions between categories—in practice, the interpretation of confusion matrices – are not

considered in detail. Yet, they are highly relevant—in both human-human and human-

machine interaction, there can be fatal confusions and irrelevant ones.

Within the fuzzy world: We cannot overcome the intrinsic problem of fuzziness in emo-

tion modelling. The default way of dealing with it is to face this variability by employing

‘real life’, non-prompted/non-acted emotions [3–6] and more sophisticated labelling

schemes [7–9]. In this article, we pursue another approach: We stick to carefully designed

acted emotion categories; this enables us to systematically extend the scope beyond the

restrictions described in the following, keeping the main object—the (intended) emotion

categories—constant. Note that we do not assign any ‘higher value’—or even ‘ground truth

status’—to acted emotions; they simply serve as reference categories (gold standard) that

Fig 1. The five worlds. Summary of how we investigate the five worlds in this study.

https://doi.org/10.1371/journal.pone.0281079.g001
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can be controlled to a higher extent than real-life data. Fuzziness is taken care of by analys-

ing the confusions between these categories. As we want to exclude the influence of linguis-

tics as intervening factor, we will resort to nonsense speech.

(ii) The closed world: First studies in SER typically dealt with data collected in-vitro—carefully

selected emotional categories [10], such as the ‘big six’ [11], produced by actors and

recorded in the lab [12]. These were followed by attempts towards addressing more reality,

e. g., by considering elicited, spontaneous speech [3, 4], modelling more realistic scenarios

[13], or investigating mixed emotions [6]. Still, most of the machine learning (ML) research

is typically hampered by a Closed World Fallacy [14]: An ML model’s performance obtained

with a few classes cannot be generalised to a real-life scenario where more, confounding

classes do exist. Differently, in research on human emotion perception, attempts towards

investigating a more realistic scenario by the assessment of ‘recognition’ rather than ‘dis-

crimination’ have been carried out [15]. This was possible by considering ‘distractors’, i. e.,

providing more emotional classes to the user than those included in the actual data [16, 17].

Beyond the closed world: In order to investigate confusion patterns between emotions in a

more realistic setup, we include emotional distractors in both the perceptual and ML tasks.

As in our pilot study [18], we use a subset of the GEneva Multimodal Emotion Portrayals
(GEMEP) database [19], i. e., nonsense speech produced in four emotions (anger, fear, sad-

ness, happiness) with different arousal levels [20].

(iii) The clean world: Noise pollution hampers speech communication, reduces comprehen-

sion, and can lead to misunderstandings [21]; yet, most of the works in SER investigate data

collected in the lab [12]. For assessing the impact of background noise on human under-

standing of paralinguistic information [22–24], as well as for investigating to which extent

SER might be impaired by adverse environmental conditions [13, 25], artificial noise has

been typically applied to mask speech recorded in the lab. Differently, real-life noise has sel-

dom been employed [26–28].

Beyond the clean world: In order to evaluate how noisy real-life conditions affect humans

and ML when identifying emotions in speech, we systematically compare both perception

and classification results obtained from clean and noisified speech. In contrast to our pilot

study [18] that employed only artificial noise (brown, pink, and white), we now assess three

real-life noises (bell, rain, and train station). From now on, we will refer to the experiments

based on artificial noises as EXP-1 and to those based on real-life noises as EXP-2. As in the

pilot study [18], the speech was masked with four Signal-to-Noise Ratios (SNRs): -1 dB, -0.5

dB, +1 dB, +3 dB.

(iv) The small world: Due to the problems of collecting data and especially annotations [29],

emotion corpora are typically small—far away from the size of corpora used for ASR. This

can impair the performance of DL systems, which are known to be influenced by the

amount of training data. Since DL has revolutionised computer vision [30], there is much

interest in other fields on comparatively evaluating whether state-of-the-art ML methods

outperform traditional ones [31, 32], and how much performance is impacted by the size

of the databases [33]. Yet, this kind of assessment is still rare in the context of SER [34].

Beyond the small world: In order to evaluate to which extent the performance of traditional

methods in SER, e. g., of hand-engineered features, is comparable to the one achieved by

representations learnt with state-of-the-art DL procedures, we systematically compare the
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performance of the INTERSPEECH 2013 Computational Paralinguistics ChallengE (Com-
ParE) feature set [35] with the one of wav2vec2 [36]. For our experiments, we consider

standard hyperparameter optimisation, training samples with varying sizes, and two simple

ML models: support vector machine (SVM) and multilayer perceptron (MLP). It was neces-

sary to use a small number of items in the initial dataset in order to allow for the comparison

‘human vs machine’; despite the promising results achieved by DL models in SER [37], we

thus refrain on their use in the present study, as they require a much larger dataset. (Of note

we want to mention that in preliminary experiments, we employed modern DL methods

that, however, yielded unsystematic and low performance due to sparse data.) Moreover, as

we are interested in investigating a variety of SNRs and types of noises, considering a large

initial set of clean samples would make the human annotation task far too costly.

(v) The one world: Since the categories ML tries to model are typically based on perceptual

human assessment, there is an intrinsic connection between human perception and its

encoding in ML. In spite of the rare attempts aimed to comparatively investigate human

perception and ML classification [38–41], to the best of our knowledge, a one-to-one assess-

ment guaranteeing identical setups (‘other things being equal’) has never been performed

so far. In [42], a first attempt of comparing human perception (previously evaluated in

[43]) and ML accuracy is presented. However, neither noise nor distractors, needed to

guarantee ‘realistic’ conditions, have been taken into consideration in these two studies.

Beyond the one world: In order to perform a one-to-one comparison between human and

machine, we guarantee the same ‘realistic’ conditions by employing noises and distractors

for both perception and classification and systematically compare their performances.

Summing up our motivation and the approaches chosen, this study aims to encourage a

more adequate modelling and classification of emotions encoded in speech, which is achieved

by investigating four specific fallacies beyond the state-of-the-art: First, unlike previous works

in SER, which normally concentrate on few emotions while disregarding all other ones, we

assess the performance of humans and ML in a more realistic setting, i. e., by assessing their

efficiency in handling confounding factors. For that, we introduce so-called ‘distractors’, i. e.,

emotion classes that have not been seen in the training phase. Second, unlike traditional

research, which normally concentrates on clean data, we assess the impact of real-life noise

pollution in humans and ML systems while guaranteeing comparable conditions. Third,

although ML approaches need a large amount of data, in SER research typically only small

datasets are available; we therefore systematically assess how ML performance in SER is

impacted by comparing different models, features, and database sizes. Fourth, unlike previous

works, where human perception and ML classification are not compared on a strict basis, we

perform a one-to-one comparison that enables us to assess the efficiency of ML in emulating

human’s perception in SER. In Fig 2, an overview of the different constellations taken into

account to systematically assess the described worlds is depicted. Methodological details on

each of them are given in the Section Materials and methods.

Materials and methods

Data and set-up: Beyond the closed world

Given the lack of agreement on the adequacy of the two main emotion models [17], we consid-

ered both: the categorical [11] and the dimensional [20]. From the categorical model (with

unique discrete classes [11, 44]), we chose the four basic emotions ANGER, FEAR, SADNESS, and
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HAPPINESS. From the dimensional model that represents emotions within a multi-dimensional

space [20], we considered high and low levels of the arousal dimension, i. e., intensity. Thus,

each of the four categories is encoded in both high and low arousal: hot anger and irritation,

panicked fear and worried fear, desperate sadness and depressed sadness, elated happiness and

pleasured happiness. Evaluating these four basic emotions with different arousal levels, referred

to as the four emotional families [45], is a well-established procedure that enables to assess how

a unique category varies over the arousal dimension. It allows to identify confusion patterns

between instances with similar quality but different intensity [45]. In addition to the four emo-

tion families, disgust and surprise were also considered but without arousal connotations. This

was decided in order to simplify the set-up as these two emotions, unlike the previous four, are

ambiguous concerning their ‘primary/secondary’ status: They are identified as basic by some

authors [11] but not by others [46].

To reduce the probability of performing a discrimination rather than a recognition task

[15], some emotions were ‘real’, others were ‘distractors’ [16]. ‘Real’ are those represented by

audio samples in the listening test and in the ML test set. Distractors are labels for emotion

Fig 2. Overview of the study. The methods considered to go beyond the state-of-the-art in the investigated worlds are illustrated: beyond the

Closed World (bottom left), both real and distractor labels are used; beyond the Clean World (upper left), 6 types of noise at 4 SNRs are applied;

beyond the Small World (upper middle), four data groups with different training sizes, two feature sets and two models are optimised through

3-fold speaker independent cross validation (CV) in 16 experiments; beyond the One World (bottom middle), classification and perception results

by machines and humans are assessed through a one-to-one comparison of the Confusion Matrices (CM); in the Fuzzy World (right), the

confusion patterns of the perception and classification experiments are evaluated.

https://doi.org/10.1371/journal.pone.0281079.g002
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classes provided to our participants that do not correspond to any of the audio samples to be

annotated. In the ML task, audio samples of the distractors, i. e., spoken utterances produced

by the actors expressing the emotions taken as distractors, were used to train the models but

not for test, by that creating similar conditions for the perception and the ML experiment.

From the ten emotions, six are real: hot anger, irritation, panicked fear, depressed sadness,
elated happiness, and pleasured happiness; four are distractors: worried fear, desperate sadness,
surprise, and disgust. The procedure how to choose real emotions and distractors is described

in more detail in [18]. In Fig 3, real emotions and distractors are displayed.

Previous research has highlighted that the linguistic component of emotional speech affects

human perception depending on the listener’s mother tongue [47]: native speakers are much

more precise than non-native ones since they use both verbal and non-verbal information when

identifying emotions [47]. One strategy to deal with this problem is to take nonsense utterances

into account, which prevent any linguistic influence in the listener [48]. In addition, using a

standard sentence (i. e., producing the same sentence to express all the evaluated emotions [49]),

enables to comparatively assess how emotions are identified, based on their acoustic characteris-

tics, while keeping the verbal component and by that, the phonetic/phonological content, stable.

Thus, to avoid a linguistic bias, i. e., the influence of linguistic meaning on the listeners, the

nonsense utterance Ne kal ibam soud molen! from the GEMEP database [19] was used. The

nonsense utterance consists of a pseudo-linguistic phone sequence based on phonemes as they

can be found in several Western languages; thus they give the impression of a real utterance

produced in a foreign language [24]. Note that a nonsense utterance, by definition, does not

have any meaning in any language; thus, it is not expected to be understood by the reader. The

utterance was produced by six French actors (3 female, 3 male). In total, 36 instances from

Fig 3. Emotions used in the perception and ML experiments. From the 10 emotions: 6 are ‘real’, whose audio files were used in all perceptual and ML

experiments (framed and blue), 4 are ‘distractors’, whose audio files were used only to train the ML models (italics and green); ‘basic’ emotions are

capitalised; the inner ellipse indicates no arousal connotations.

https://doi.org/10.1371/journal.pone.0281079.g003
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GEMEP are considered: 1 utterance x 6 speakers x 6 emotions (duration μ = 2.57 sec., σ = 0.77

sec.). As the phonetics of a nonsense utterance might resemble a specific language, thereby

influencing the emotional understanding of a native of such a language [48, 50, 51], we

recruited a homogeneous group of Italian listeners: 132 engineering students from Tor Vergata
university (55 female, 77 male; age μ = 20.7 years, σ = 2.5 years). The perception experiment

was hosted on a browser-based interface provided through the gamified crowd-sourcing plat-

form iHEARu-PLAY [52], and presented over headphones as a forced-choice task. The stimuli

were randomised differently for each participant; they could select only one out of the 10 emo-

tions. Informed consent was obtained through the platform; the volunteering participants

obtained credits but remained anonymous and provided only gender and age. Since the

research processes carried out cannot affect the physical or psychological integrity of the

study participants, the Ethics Committee of the University of Augsburg confirmed that ethical

approval was not necessary for this study.

Real-life noise: Beyond the clean world

To mask the emotional speech, three real-life noises from different soundscapes [26] were cho-

sen from the web-dataset freesound: bell (rural), rain (nature), and train station (urban); cf.

Fig 4 (right). Each noise (10 sec. length) was mixed with the speech items at four Signal-to-

Noise Ratios (SNRs): -1 dB, -0.5 dB, +1 dB, and +3 dB. In [18], these SNRs have produced

clear and systematic differences in the perception of noisified emotional speech. Since utter-

ance length varies across speakers and emotions, the noise segments used to mask every

instance were randomly selected. Although from real-life, the chosen noises are homogeneous,

by this guaranteeing a comparable masking across samples. The noises can be freely down-

loaded at: https://drive.google.com/drive/folders/1nxF2EbRcYVJp9ce5OwqIUsrMr1AdvL5O.

The artificial noises used in [18] (brown, pink, and white) are displayed in Fig 4 (left). The

bell noise, up to approx. 1.5 kHz, presents a trend similar to brown noise, with a fall of energy

around 6 dB per each doubling in frequency; above 1.5 kHz, this trend is inverted, increasing

around 6 dB per each doubling in frequency. The rain noise has a steady power density up to 1

kHz and an increment of around 3 dB per each doubling in frequency above 1 kHz—thus, an

inverse trend w. r. t. pink noise. The train station noise, showing an almost equal distribution

of energy across all the frequency bands, is similar to white noise. Note that here, we compare

only the magnitude spectra of our signals and disregard other, more fine-grained characteris-

tics. In total, 432 ‘noisified’ stimuli were generated (36 instances x 3 noises x 4 SNRs), resulting

in 468 stimuli (432 noisified + 36 clean). Due to the big amount of stimuli, to avoid fatigue,

they were randomly assigned to four sessions (each of 45 min.).

Since the real-life noises were applied with a specific noise type and SNR, our samples

might not perfectly reflect real environments, which vary over time in quality and intensity.

Fig 4. Spectral distribution. Frequencies between 0–8 kHz (most important for speech) and amplitudes between -40

to 40 dB, are shown for the artificial (brown, pink, white) and the real-life (bell, rain, train station) noises. All samples

have 10 sec. length (Root Mean Square is normalised).

https://doi.org/10.1371/journal.pone.0281079.g004
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Thus, to assess the validity of the audio samples, the listeners rated also whether the noisified

instances were produced in a real-life situation. In more than 75% of the cases, with no

marked differences between the highest (+3 dB) and the lowest (-1 dB) SNR, Pearson’s chi-

squared yielded p�.175 for all the comparisons, i. e., listeners perceived the noisified sam-

ples as produced in real-life conditions. This is not surprising, considering the short length

of the instances (μ = 2.57sec., σ = 0.77sec.), for which we might assume a sort of steadiness

also for in-the-wild samples. In real-life situations, people might increase their vocal effort

when exposed to noise; this Lombard effect is characterised by an increment in amplitude,

pitch, and spectral variations [53]. As each emotion has typical acoustic traits [45], which

differ between Lombard and non-Lombard speech, findings from Lombard speech would

hardly be comparable to previous works that mostly evaluate non-Lombard speech. More-

over, speech need not necessarily be altered in noisy environment, when, e. g., two dialogue

partners are close together; yet, it will be more difficult for listeners further away to under-

stand their conversation.

Machine learning: Beyond the small world

The diagram in Fig 5 illustrates the workflow of the ML implementation designed to assess

how different sizes of the training set as well as features and architectures impact a model’s

performance in an SER task. The model training and evaluation are performed for 4 differ-

ently-sized training sets (corresponding to the four data groups A, B, C, and D), considering 2

independent feature sets, and 2 ML approaches, resulting in 16 experiments.

Fig 5. Experimental design. Main components of the ML workflow: Data groups (A, B, C, and D) represented according to the diverse sizes of their

training set; Feature sets (ComParE and wav2vec2); and ML models (SVM and MLP).

https://doi.org/10.1371/journal.pone.0281079.g005
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Features and models. We evaluate the performance of two ML models: (i) an SVM classi-

fier; although this is considered to be overtaken by more sophisticated approaches, mainly

Deep Neural Networks (DNNs), it is still competitive in SER [35, 54]; (ii) an MLP, i. e., a classi-

cal fully-connected feed-forward neural network.

The models were fed with traditional hand-engineered features (ComParE) and with state-

of-the-art DL-based embeddings (wav2vec2). ComParE [35] is a feature set tailored for SER

which encompasses 6 373 acoustic features divided into four sub-sets: Mel-Frequency Cepstral

Coefficients (MFCCs), spectral features, prosodic features, and voice quality features. They are

computed by applying statistical functionals, including extremes, percentiles, moments, and

linear predictive coding coefficients, to 65 Low-Level Descriptors (LLDs) and their delta coeffi-

cients. ComParE features are extracted using the default parameters of the OPENSMILE toolkit

[55], i. e., a Hamming window of 20 ms for the MFCCs and spectral features, and a Gaussian

window of 60 ms for the prosodic and voice quality features; all the LLDs were extracted with a

10 ms hop size. The models were fed with the functionals, i. e., each instance was represented

as a vector of length = 6373.

In addition, features are extracted using the wav2vec2 model, a deep neural network,

operating on the raw waveform and consisting of convolutional and transformer [56] layers.

The network is typically first pre-trained on large amounts of speech data in a self-supervised

way, i. e., predicting embeddings of randomly masked timesteps in each audio sequence, and

then fine-tuned on a target task. In this work, the model published by Wagner et al. [57] is

employed, which has been pre-trained on four large speech corpora and then fine-tuned on

emotion recognition in terms of arousal, valence, and dominance, using the MSP-Podcast cor-

pus [58]. As features, we use the outputs of the last transformer layer, with an average pooling

across all frames of each audio file. With this approach, each instance was represented as a vec-

tor of length = 1 024.

Data groups. Since DL approaches are said to be more successful with higher numbers of

samples, the experiments were performed on four data groups (A, B, C, and D) varying in the

size of the training set. The four data groups encompass the same emotions: 6 real (considered

in all partitions), 4 distractors (considered only for ML training and optimisation, i. e., the tun-

ing of the models’ hyper-parameters described in the Section Model Optimisation). In Fig 6,

the distribution of samples across data groups and partitions is given (cf. Section Partitioning
for further details).

(i) Data group A: 1 350 instances (900 real + 450 distractors). The 900 real are those from the

two perceptual studies (EXP-1 and EXP-2): 36 clean (6 speakers x 1 utterance x 6 emotions)

+ 864 noisified (36 clean x 6 noises x 4 SNRs). The 450 distractors are produced by the same

6 speakers on the same utterance: 18 clean (6 speakers x 1 utterance x 4 emotions) + 432

noisified (18 clean x 6 noises x 4 SNRs). Note that 6 out of the 24 clean expected instances

were missing from GEMEP (3 for surprise, 3 for disgust), thus only 18 were considered.

(ii) Data group B: 2 225 instances (1 350 from A + 875 new). The 875 new (575 real, 300 dis-

tractors) are produced by 4 additional speakers (2 female, 2 male) on the same utterance

and emotions used in A: 35 clean (4 speakers x 1 utterance x 10 emotions) + 840 noisified

(35 clean x 6 noises x 4 SNRs). Note that 5 out of the 40 clean expected instances were

missing from GEMEP (2 for disgust, 2 for surprise, 1 for cold anger), thus, only 35 were

considered.

(iii) Data group C: 9 150 instances (2 225 from B + 6 925 new). The 6 925 new (4 825 real, 2

100 distractors) are produced by the 4 additional speakers from B, on the nonsense utter-

ance Koun se mina lod belam? and the sustained vowel [a:] (used to increase the amount
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of instances) in the 10 emotions: 277 clean (unbalanced across speakers and emotions in

GEMEP) + 6 648 noisified (277 samples x 6 noises x 4 SNRs).

(iv) Data group D: 18 525 instances (9 150 from C + 9 375 new). The 9 375 new (8 225 real, 1

150 distractors) are instances from emoDB [12], produced by 10 German actors (5 female,

5 male) on a variety of utterances and 5 emotions: 375 clean + 9 000 noisified (375 samples

x 6 noises x 4 SNRs). From the 5 emotions, 4 were real (hot anger, panicked fear, depressed

sadness, and elated happiness), one was a distractor (disgust). Note that the sentences in

emoDB are neutral, i. e., void of any ‘emotional connotation’, which makes them compara-

ble to the utterances from GEMEP. emoDB is not used in the perception experiments; thus,

non-nativeness does not play any role.

Partitioning. In the following, we introduce the data partitioning across experiments and

how this relates to the ML optimisation. In ML, an experiment is a (classification) task con-

ducted with a specific feature set, model, partitioning, and data group. Partitioning aims at dis-

tributing the data points onto the three (speaker-independent) sets: training (used to train the

model); development (used to optimise the model’s hyperparameters); and test (used to test

the model’s performance).

Fig 6. Distribution of real samples and distractors. Partitioning across the three sets (training, development, test) and data group (A, B, C, D) is

indicated. The distribution of speakers is: Training (A = 2, B and C = 6 each, D = 16; Development and Test (A, B, C, D = 2 each).

https://doi.org/10.1371/journal.pone.0281079.g006
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To perform a subject-independent task, the samples produced by a pair of speakers (1

female, 1 male) out of the 6 speakers evaluated in the perceptual study was kept for the test set,

while the remaining 4 were considered for training and development; additional speakers are

used for training in groups B, C, and D. To prevent a speaker-related bias, the experiments

were carried out three times, by considering each time a different pair in the test set, i. e., three

permutations of the pairs. Subsequently, the results across the three experiments are averaged.

For comparability, the same pairs were used for the three test sets in all the experiments

regardless of the data group; each test set was made up of 300 samples: 12 clean (2 speakers x 6

real emotions), 288 noisified (12 clean samples x 6 noises x 4 SNRs). In Fig 6, the distribution

of samples is given. Note that the sum of distractors per data group (A, B, C, D) indicated in

Fig 6 is lower by 150 than the one given in the description of the data groups. This is because

no distractors are considered in the test set, cf. Fig 6, although they do exist in every data

group, since needed to perform the permutations across sets.

For optimisation, a three-fold nested Cross-Validation (CV) was chosen. Evaluations were

carried out individually for each acoustic condition (clean and noisy ones) and SNR level, as

well as combining all the samples together. In order to guarantee a fair comparison with the

perception results, for the classification of individual conditions, the training was, however,

carried out on all the conditions. Although this makes the ML task more challenging, it allows

a one-to-one comparison since the previous knowledge from humans can be considered, to

some extent, comparable to the knowledge of a model trained on multiple conditions. In addi-

tion, for the MLP, early stopping was applied to avoid over-fitting.

Model optimisation. To optimise the models, we considered a reduced range of values

for specific hyper-parameters. We do not concentrate on pushing one specific approach

towards its limits but on comparing the approaches based on ‘standard’ settings, which could

be employed in a more generic scenario, i. e., beyond a specific dataset. To make a fair compar-

ison between humans and ML, the models were trained and optimised on the recognition of

the 10 emotional classes, i. e., real and distractors were considered in the training and develop-

ment sets. By this, we infer in the models a knowledge about the emotional classes used as dis-

tractor similar to the one that a human (exposed to these emotion) would have. Differently, as

performed in the perceptual study, the test set contained only samples of the real classes. Note

that our goal is not to achieve the best possible performance through optimisation but to

understand how traditional and state-of-the-art methods perform in comparable settings.

(i) Support Vector Machine: We used an SVM with linear kernel built on the scikit-learn

python library [59]. For its optimisation, we tuned the complexity (C): 5 different C on a

logarithmic scale (from.00001 to.1) were evaluated. Subsequently, the SVM was trained

again (considering the training and development sets together as a unique set) with the C

which yielded the highest Unweighted Average Recall (UAR, i. e., the arithmetic mean of

the recalls of the 10 classes) during optimisation. Due to the unbalanced distractors, UAR

for the development set was considered.

(ii) Multilayer Perceptron: We built an MLP on TensorFlow 2.6 [60] through the API Keras

[61] and optimised it according to three hyper-parameters: Number (N) of hidden layers

and neurons, learning rates, and batch sizes; for each, we evaluated three different values.

The N of hidden layers and neurons was set out considering for each deeper hidden layer

(from 1 to 3) a decrease by half in the N of neurons (from N neurons = N features/2 in layer

1 to N features/8 in layer 3). The values for the learning rate were:.01,.001,.0001; for the

batch size: 50, 100, 200. Beyond evaluating all the combinations of these values, other

hyper-parameters were set out: Adam optimiser, Rectified Linear unit (ReLu) activation
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functions in the hidden layers, Softmax activation function in the output layer, a maximum

of 100 epochs, a dropout of 20%, and early stopping with a patience of 10.

To enhance the robustness of the results, each experiment is repeated 5 times using a differ-

ent random initialisation of the model in each iteration.

Human vs machine: Beyond one world

To the best of our knowledge, one-to-one comparisons between human perception and state-

of-the-art ML models based on identical settings have not been performed so far. As for a

more traditional approach, see [38], where a linear classifier has been employed. For a compar-

ison between perception and ML within a cross-lingual setup, see [40, 62]. For Japanese, see

[42, 43]. However, these studies do not use distractors; thus, to which extent emotional confu-

sion patterns displayed by listeners might be mirrored by state-of-the-art ML is not clear yet.

To enable a fair comparison between human and ML, instances expressing emotional dis-

tractors were used for training and optimising the ML models, but not for testing them. This

makes the two tasks comparable since the distractors are learnt by the system, although they

are no test targets. To avoid complicating the ML experiments carried out individually on each

noise, all the SNRs were considered together; when performing the one-to-one comparison,

the perceptual results obtained from the four different SNRs were taken together as well. For

the perceptual and ML comparison (cf. Section Human vs machine: Assessing the two worlds),
we use the best performing model, by this aiming to illustrate to which extent ML methods

emulate (or at least mirror) human perception of emotion. Although special efforts were

taken to make the tasks comparable, we might still consider the task being slightly harder for

humans, as they have background knowledge but no specific training.

Results

We report Unweighted Average Recall (UAR) for all experimental results, i. e., the mean of

the class-wise recall in percent from the diagonal in the confusion matrices. Here, the UAR is

equal to the weighted average recall as in the perceptual study and the test set for the ML task,

the class frequencies are fully balanced. We also discuss recall (true positives divided by the

total number of samples per class) and precision (true positives divided by the total of ‘recog-

nised as’ per class). Beside the standard evaluation metrics UAR, recall, and precision, we

report also sums of ‘identified as’ per class; this is meaningful for interpreting the confusion

patterns towards specific emotions.

Due to the intrinsic problems of Null Hypothesis Testing [14, 63], throughout this article—

if appropriate—we display p-values from two-tailed Pearson’s chi-squared with Bonferroni

adjustment as descriptive measures, not as criteria deciding between hypotheses. By that, we

provide the traditional measure for readers expecting p-values—however, without employing

this paradigm ourselves.

Perceptual study

Confirming the outcomes of the pilot study [18] on artificial noise (EXP-1), the results from

EXP-2 employing real-life noise show that the higher the noise intensity, the lower is the UAR.

Since this holds for all noise types, from now on only results for the most affecting SNR (-1dB)

will be discussed here; for results across all SNRs, see Section Human vs machine: Assessing the
two worlds.

Role of distractors: Assessing a more open world. Perceiving female voices, female lis-

teners achieved a mean UAR of 37.8% across conditions, male 34.1%. Perceiving male voices,
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female listeners achieved 27.8%, male 24.1%. Due to these small differences (p = .116 for female

voices, p = .085 for male ones), from now on, both listeners’ genders will be evaluated together.

Similarly, none of the differences on the perception of female and male voices was marked:

Across conditions, females are perceived with a mean UAR of 34.4%, males with 24.6% (the

smallest p-value was p = .163). Hence, listeners’ responses will be evaluated disregarding speak-

ers’ gender as well.

As the recognition of the reference categories is more challenging than their discrimination,

it could be expected that the distractor labels stimulated the spread of the responses, shown

by a low Fleiss’ kappa inter-rater agreement (k = 0.22 in EXP-1, k = 0.20 in EXP-2). However,

the distractors yielded values lower than 25% for all emotions except worried fear, where they

amount to 28.1% in the most noisy environment, i. e., rain noise at -1 dB. Confirming previous

findings [45, 64, 65], depressed sadness (from now on referred to as ‘sadness’), was the emo-

tion best recognised: mean recall of 61.9% in EXP-1 and 62.5% in EXP-2 (cf. Table 1); p<.001

in all the comparisons except sadness vs irritation in EXP-1 (p = .169).

Sadness was best recognised due to the fact that all emotions are perceived to some extent

attenuated in background noise, as already proved in [18] by varying the SNR level. This ‘attenu-

ation’ gives the impression of lower energy and pitch [66] to the other emotions, corresponding

to acoustic characteristics typical for sadness and to some extent for irritation. By that, this cre-

ates a strong confusion towards these two low aroused emotions, particularly for sadness, which

due to this bias shows a higher recall in background noise than in clean condition. In order to

identify the direction of the main confusion patterns among emotional categories, i. e., to under-

stand which emotions attract more confusion, we evaluate the sums of responses ‘identified as’,

i. e., the ‘correct’ (hits) + the ‘incorrect’ (false alarms) given for each emotion (cf. Table 2). With

hits we refer to the number of ‘correct’ responses, i. e., the samples from each emotional category

correctly perceived by the listener; with false alarms we refer to the number of ‘incorrect’

responses, i. e., the samples misclassified with a given emotional category although expressing

another emotion. The emotion mostly chosen was sadness, with a mean across conditions of

142.1% for EXP-1 and 162.8% for EXP-2. Second, as expected, comes irritation: mean of 133.6%

for EXP-1, 125.3 for EXP-2. All the other emotions were below 100% for ‘identified as’.

Clean vs noise: Assessing a noisy world. As expected, the clean samples are those recog-

nised best in both experiments: 45.1% in EXP-1, 38.3% in EXP-2; cf. UAR for clean in Table 1.

The three real-life noises affected the listeners similarly: Samples noisified with bell noise are

Table 1. Perceptual results for clean and noisified conditions.

% Hot Anger Irritation Sadness Panic Fear Elation Pleasure UAR

EXP-1 clean 59.5 64.3 58.6 29.8 30.1 28.1 45.1

brown 34.1 61.3 66.2 21.7 18.5 18.9 36.8

pink 23.1 40.1 59.0 19.3 11.2 15.1 28.0

white 31.5 51.0 63.6 20.0 17.3 12.6 32.7

mean 37.1 54.2 61.9 22.7 19.3 18.7 35.7

EXP-2 clean 43.5 50.8 61.3 31.0 29.7 13.8 38.3

bell 18.9 41.0 61.8 21.4 20.6 5.1 27.9

rain 14.4 29.4 65.7 15.8 18.6 6.1 25.0

station 14.2 37.9 61.1 16.9 21.8 6.7 26.5

mean 22.7 39.8 62.5 21.3 22.7 7.2 29.4

Noise at -1 dB SNR: artificial (EXP-1), and (EXP-2). For each condition, 36 samples (6 per emotional class), assessed by 26 users in EXP-1 and 132 users in EXP-2.

Results for female and male listeners are aggregated. Recall per class, UAR, and mean across conditions for recall and UAR are given (values above 50% in bold).

https://doi.org/10.1371/journal.pone.0281079.t001
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perceived slightly better (27.9%), those with rain noise slightly worse (25.0%), those with train

station noise in between (26.5%); cf. UAR for EXP-2 in Table 1. With higher differences, this

is also observed in EXP-1: brown noise affected less (36.8%), pink noise most (28.0%), white

noise in between (32.7%); cf. UAR for EXP-1 in Table 1. These trends can be interpreted, to

some extent, according to the acoustic characteristics of the noises: bell similar to brown, rain

to pink, train station to white. Yet, all these differences are minimal (p�.348).

In order to visualise perception in a sort of ‘cognitive space’, 2-dim(ensional) Non-Metric
Multi-Dimensional Scaling (NMDS, [67]) solutions for the confusion matrices for clean and

the most disturbing real-life background (rain noise at -1dB), displayed in Table 3, are given in

Table 2. Sums of ‘perceived as’ (hits and false alarms).

% Hot Anger Irritation Sadness Panic Fear Elation Pleasure mean

EXP-1 clean 78.0 124.6 102.6 86.0 34.2 83.8 84.9

brown 46.5 147.4 139.0 77.9 29.2 78.6 86.4

pink 37.2 135.6 168.9 75.7 23.8 68.1 84.9

white 49.3 126.9 157.8 80.9 27.1 65.0 84.5

mean 52.8 133.6 142.1 80.1 28.6 73.9 85.2

EXP-2 clean 61.4 131.3 130.0 65.5 43.2 45.5 79.5

bell 31.3 127.3 163.4 61.1 40.1 54.6 79.6

rain 23.6 118.5 186.2 50.9 35.2 51.9 77.7

station 26.2 125.7 171.7 53.9 38.5 51.4 77.9

mean 35.6 125.3 162.8 57.9 39.3 50.9 78.6

Results for clean and noisified conditions (at -1 dB SNR) are given. For each, 36 sample (6 per emotional class), assessed by 26 users in EXP-1 and 132 users in EXP-2.

Results for both female and male listeners are aggregated. Means per emotion across conditions, and per condition across emotions are given (values above 100% in

bold).

https://doi.org/10.1371/journal.pone.0281079.t002

Table 3. Confusion matrix for the perception of emotions by 132 listeners.

% Hot Anger Irritation Sadness Panic Fear Elation Pleasure distractors

clean Hot Anger 43.5 35.7 2.3 4.3 2.3 2.8 9.2

Irritation 7.3 50.8 12.3 2.4 3.3 7.0 17.0

Sadness 1.1 11.0 61.3 1.0 2.5 4.1 18.9

Panic 2.2 10.9 17.9 31.0 2.3 3.0 32.7

Elation 6.1 13.1 3.2 10.7 29.7 14.9 22.3

Pleasure 1.3 8.2 33.1 16.1 3.2 13.8 24.3

precision 70.7 39.1 47.2 47.3 68.6 30.3 –

rain SNR -1 Hot Anger 14.4 40.8 7.0 7.7 4.1 6.7 19.3

Irritation 2.6 29.4 23.7 2.9 3.8 12.1 25.6

Sadness 1.1 10.3 65.7 2.7 2.4 3.8 13.9

Panic 2.4 14.5 29.5 15.8 3.2 6.5 28.1

Elation 1.7 14.4 11.8 12.0 18.6 16.8 24.7

Pleasure 1.4 8.9 48.4 9.8 3.0 6.1 22.4

precision 61.0 24.8 35.3 31.1 52.9 11.7 –

For each emotion, 6 instances (3 produced by females, 3 by males) were assessed in clean and rain noise at -1 dB SNR. Precision and cases misclassified as distractors are

indicated. For simplicity, and since distractors are not represented in the NMDS in Fig 7(a), percentage of cases misclassified as any of the distractors are given together.

Lower values for the distractors are associated with a higher perception accuracy and vice-versa. Darker shadowing indicates higher percentage, values >50% are

boldface. The confusion matrices are basis for the NMDS in Fig 7(a).

https://doi.org/10.1371/journal.pone.0281079.t003

PLOS ONE Humans vs machines in speech emotion recognition

PLOS ONE | https://doi.org/10.1371/journal.pone.0281079 January 30, 2023 14 / 26

https://doi.org/10.1371/journal.pone.0281079.t002
https://doi.org/10.1371/journal.pone.0281079.t003
https://doi.org/10.1371/journal.pone.0281079


Fig 7(a). These results are comparable to the NMDS solutions presented in [18] for EXP-1, for

clean and pink noise at -1 dB; thus, only the results of EXP-2 will be discussed. The NMDS rep-

resents the non-metric optimal distances between the emotion categories. Starting with a ran-

dom configuration of points, the NMDS tries to find the optimal proximity between points,

i. e., the interpoint distances configuration, taking into account the dissimilarities between the

classes [68]. The stress value between the optimally scaled data (in a reduced dimensionality)

and the distances are optimised by finding a new configuration of points. This is iterated until

a criterion is met. NMDS is one amongst several graphical representations highly useful for

Exploratory Data Analysis (EDA) and visualising constellations that are difficult to see in the

confusion matrices the NMDS is based on.

In Table 3, the confusion matrices, the NMDSs shown in Fig 7(a) are based on, are given;

note that Fig 7(b) will be discussed further below. Sadness, irritation, and hot anger, perceived

with a recall of 61.3%, 50.8%, and 43.5%, respectively, are the emotions best recognised in

clean condition; cf. the diagonal in Table 3. Due to the confusion attracted by sadness in

adverse environmental conditions, this still holds in background noise: 65.7%; cf. sadness for

Rain in Table 3. No marked difference is shown for the recognition of sadness between the

noisy and the clean condition (p = .076). This can also be seen in the NMDS, where sadness is

represented at an extreme position in both clean and noisy conditions; cf. SA in Fig 7(a).

Although irritation and hot anger are recognised worse in noisy than in clean condition (p
<.0001), they are also represented at more extreme positions—across from sadness—in both

clean and noisy background; cf. IR and HO in Fig 7(a). This is most evident for hot anger and

indicates that its confusion with sadness is always minimal regardless of the condition, i. e.,

they are perceived as clearly different from each other. The percentage of utterances expressing

sadness misclassified as hot anger is the same in clean and background noise: two times 1.1%;

see Table 3.

Fig 7. Non-Metric Multi-Dimensional Scaling (NMDS). The 2-dim(ensional) solutions represent (a) listeners’

perception and (b) automatic classification: hot anger (HO), panicked fear (PA), irritation (IR), depressed sadness

(SA), elation (EL), and pleasure (PL); in clean and in rain noise. Kruskal’s stress for perception in (a): Clean (.115);

Rain noise (.036); for classification in (b): Clean (.150); Rain noise (.114); bottom left, the x-axis is mirrored to display

the dimensions similarly for perception and classification.

https://doi.org/10.1371/journal.pone.0281079.g007
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Pleasure is the emotion worst recognised, with the lowest recall and precision in both con-

ditions: 13.8% and 30.3% for clean, 6.1% and 11.7% for rain SNR -1, for recall and precision,

respectively; cf. Table 3. Yet, no marked differences are shown w. r. t. the next worse recog-

nised emotions, i. e., elated happiness in clean and panic in noisy conditions: p = .101 and p =

.538, respectively. This might indicate that pleasure, followed by panic and elation, has a lower

prototypicality [34], i. e., its expression might acoustically not be clearly defined, resulting in

confusions with other emotions. Indeed, pleasure and to some extent panic are displayed

rather in the central area of the NMDS; cf. PL and PA in Fig 7(a), indicating a lower dissimilar-

ity between them.

Machine learning approach

Since no marked differences were shown between the perception of male and female voices,

the ML experiments were performed considering all the samples together, irrespective of

speakers’ gender.

Data groups: Assessing a bigger world. In Table 4, the performance of each feature set

for each model on the evaluated data groups is given; to focus on evaluating the role of the

training set size, noisified and clean samples are considered together. Note that the perfor-

mance for clean vs noisified is given in Section Clean vs noise: Assessing a noisy world and the

performance of ML for each different noise individually is given in Section Human vs machine:

Table 4. ML results considering all conditions together.

ComParE features

% Hot Anger Irritation Sadness Panic Elation Pleasure UAR

SVM A 42.0 20.7 34.7 6.0 14.0 4.7 20.3

B 46.0 22.0 36.7 11.3 12.0 8.0 22.7

C 32.7 30.0 32.7 20.0 18.7 12.7 24.4

D 26.0 28.7 32.7 29.3 17.3 12.0 24.3

mean 36.7 25.4 34.2 16.7 15.5 9.4 22.9

MLP A 33.2 30.3 27.2 11.2 24.1 12.1 23.0

B 41.1 30.5 27.5 16.3 29.1 7.7 25.4

C 39.9 36.8 29.3 24.0 31.6 13.3 29.2

D 46.3 43.5 27.1 31.7 30.3 12.5 31.9

mean 40.1 35.2 27.8 20.8 28.8 11.4 27.6

wav2vec2 features

% Hot Anger Irritation Sadness Panic Elation Pleasure UAR

SVM A 50.0 15.3 54.0 4.0 30.7 6.0 26.7

B 44.7 22.0 52.0 10.0 22.0 10.7 26.9

C 50.0 34.0 63.3 9.3 12.7 15.3 30.8

D 55.3 12.7 74.7 32.7 31.3 8.0 35.8

mean 50.0 21.0 61.0 14.0 24.2 10.0 30.1

MLP A 44.1 13.2 47.3 23.5 28.5 11.7 28.1

B 42.7 19.1 52.1 27.6 29.5 24.5 32.6

C 47.2 25.7 57.9 26.4 33.3 13.6 34.0

D 51.3 27.5 56.0 29.5 29.9 21.1 35.9

mean 46.3 21.4 53.3 26.8 30.3 17.7 32.7

Recall per class, UAR, and mean across data groups (A, B, C, and D) are given for each model (SVM, MLP) with both ComParE and wav2vec2 features. Note that the

size of the training set increases across data groups from A (smallest) to D (largest). For more details, cf. subsection Data groups and Fig 6.

https://doi.org/10.1371/journal.pone.0281079.t004
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Assessing the two worlds. For both feature sets and models, the UAR generally increases with

the size of the training set. This tendency is more pronounced for the wav2vec2 than for the

ComParE feature set. SVM trained with ComParE yielded the lowest difference between the

smallest and biggest data groups: 20.3 vs 24.3 (p = .239); SVM trained with wav2vec2 yielded

the highest one: 26.7 vs 35.8 (p = .017); cf. UAR for A vs D in Table 4). This shows, as expected,

that using a larger training set and state-of-the-art features impacts performance positively.

In order to investigate the distractors’ impact, the experiments were also performed for the

data group A without distractors (i. e., also not in the training set). This yielded, as expected,

better performance, in particular for SVM with ComParE features, which presents the highest

differences between UAR with and without distractors: 20.3% vs 29.6%; cf. SVM for ComParE
in Tables 4 and 5 (upper part) for results with and without distractors (p = .008). This suggests

that hand-engineered features, which do not have the advantage of being computed by an ML

model trained with a large amount of data, might be more sensitive to realistic conditions,

especially when a simple model such as SVM is used. In contrast, the wav2vec2 features are

extracted from a model tuned specifically to recognise emotion in terms of the three continu-

ous dimensions arousal, valence, and dominance [57]. Due to the high amount of training

data involved in the generation of wav2vec2 features, these representations should be sensi-

tive to a large variety of emotions, including the distractors; thus, it might be easier to separate

the distractors from the 6 real emotions when training the classifier on all 10.

Role of distractors: Assessing a more open world. Hot anger and sadness are generally the

emotions best recognised: for wav2vec2, i. e., the best performing feature set, on average 50.0%

and 61.0% for SVM; 46.3% and 53.3% for MLP, respectively. Pleasure was worst recognised: on

average across data groups�17.7% for both models and features; cf. mean recall in Table 4.

When evaluating the models in optimised conditions, i. e., without distractors, the same ten-

dency can be observed: across both models and feature sets, hot anger is the emotion best recog-

nised (43.6%), pleasure the worst (11.8%); cf. mean in the upper part of Table 5. To further

Table 5. ML performance excluding the distractors from the training set.

Group A (all conditions)

Hot Anger Irritation Sadness Panic Elation Pleasure UAR

ComParE

SVM 43.3 38.0 31.3 22.7 34.7 7.3 29.6

MLP 26.0 33.5 23.9 16.5 39.3 14.8 25.7

wav2vec2

SVM 61.3 14.7 68.0 11.3 43.3 4.0 33.8

MLP 43.9 28.4 46.3 21.5 39.2 21.1 33.4

mean 43.6 28.7 42.4 18.0 39.1 11.8 30.6

Group D (all conditions)

Hot Anger Irritation Sadness Panic Elation Pleasure UAR

ComParE

SVM 32.0 36.0 28.7 42.7 28.0 16.7 30.7

MLP 42.9 44.9 30.0 33.9 42.4 14.1 34.7

wav2vec2

SVM 55.3 16.0 67.3 36.7 48.0 17.3 40.1

MLP 53.5 39.7 62.0 30.5 47.2 17.6 41.8

mean 45.9 34.2 47.0 36.0 41.4 16.4 36.8

Results are given for data groups A and D (without distractors, all conditions). Recall per emotion and UAR are given for the performance of SVM and MLP, with

ComParE and wav2vec2 feature sets. Mean across models is also indicated.

https://doi.org/10.1371/journal.pone.0281079.t005
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assess whether this trend persists in optimal conditions, we evaluate data group D with wav2-
vec2 features that yielded the best ML results, but this time without distractors. Confirming

the perceptual results, the ML experiments on data group D without distractors show that sad-

ness is best recognised, pleasure worst: 47.0% and 16.4%, respectively; cf. mean in the lower part

of Table 5. This can be explained by the emotions’ level of prototypicality [34]: Sadness, having a

more standardised representation, is classified best; pleasure, less standardised, worst. With

wav2vec2 features, except for hot anger and elation (p>.05), sadness is markedly better rec-

ognised than all the other emotions (p�.003). Concerning UAR, the best results were reached

again with the MLP and wav2vec2 features (cf. 41.8% in the lower part of Table 5).

Clean vs noise: Assessing a noisy world. To further evaluate the influence of noise on the

classification of each emotion, the set-up leading to the best performance with distractors, i. e.,

the MLP with wav2vec2 features trained on data group D (cf. 35.9% UAR in Table 4), was

tested separately for the recognition of clean and noisy samples. In order to enable a fair com-

parison with human perception, the models already trained with all noise conditions were

used. As previously shown for perception, in Table 6, the confusion matrices for the classifica-

tion of clean data (UAR = 45.0%) and rain noise at -1 dB SNR (UAR = 31.7%), are given. As

expected, the classifier performed best without any background noise. Confirming the results

from the perceptual study (cf. Table 3), this becomes evident for hot anger, with a decline in

recall of more than half between clean and noisy conditions: 66.7% vs 30.0% (cf. clean vs rain

for hot anger in Table 6). Similarly as shown by the listeners, the decline in recall for irritation

in background noise is due to a more pronounced confusion pattern towards low aroused

emotions, i. e., sadness and pleasure: In clean background, 3.3% and 20.0% of irritation sam-

ples are misclasified as sadness and pleasure, respectively; in rain noise at -1 dB SNR, the mis-

classification raised to 20.0% and 30.0%, respectively (cf. clean vs rain for irritation in Table 6).

As shown in the perceptual study (cf. Table 3), sadness is the emotion by far best classified

in background noise, showing a recall comparable to the one achieved in clean background

(cf. 63.3% for rain and 66.7% for clean in Table 6). The same way as for the listeners, an

increase in the confusion attracted by sadness in background noise is shown for the ML

classification, which is displayed by a decrease in the precision of sadness when recognised

Table 6. Confusion matrix for the classification of data group D with MLP and wav2vec2 features in clean and rain conditions.

% Hot Anger Irritation Sadness Panic Fear Elation Pleasure distractors

clean Hot Anger 66.7 3.3 0.0 6.7 6.7 0.0 16.7

Irritation 13.3 36.7 3.3 3.3 0.0 20.0 23.3

Sadness 0.0 6.7 66.7 3.3 0.0 23.3 0.0

Panic 10.0 3.3 6.7 33.3 0.0 40.0 6.7

Elation 13.3 3.3 0.0 0.0 50.0 3.3 30.0

Pleasure 0.0 3.3 23.3 26.7 6.7 16.7 23.3

precision 64.5 64.7 66.7 45.5 78.9 16.1 –

rain SNR -1 Hot Anger 30.0 13.3 3.3 13.3 26.7 3.3 10.0

Irritation 10.0 23.3 20.0 6.7 6.7 30.0 3.3

Sadness 0.0 10.0 63.3 3.3 3.3 16.7 3.3

Panic 16.7 3.3 0.0 16.7 20.0 36.7 6.7

Elation 33.3 0.0 3.3 6.7 36.7 16.7 3.3

Pleasure 10.0 3.3 20.0 23.3 23.3 20.0 0.0

precision 30.0 43.8 57.6 23.8 31.4 16.2 –

The cases misclassified as distractors are given all together. Darker shadowing indicates higher percentage, values >50% are boldface.

https://doi.org/10.1371/journal.pone.0281079.t006
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in noisy background (57.6%) w. r. t. the clean one (66.7%); cf. precision in Table 6. The most

prominent confusion pattern towards sadness is displayed by the low aroused emotion plea-

sure in both backgrounds: in clean, 23.3% of samples from pleasure were misclassified as sad-

ness; in rain noise, 20.0% (cf. clean and rain for sadness and pleasure in Table 6). Similarly as

for perception, this confusion pattern is not particularly shown in the opposite direction,

since the confusion towards pleasure affected rather emotions other than sadness, in particu-

lar panic, followed by irritation (cf. the column for pleasure in Table 6). The confusion pat-

tern between panic and pleasure is shown in both directions for ML: 40.0% and 36.7% of

panic samples were misclassified as pleasure; 26.7% and 23.3% of pleasure samples were mis-

classified as panic (cf. clean and rain noise, respectively, in Table 6). For perception, the con-

fusion was shown only towards panic. Finally, the spread of the responses for hot anger in

ML classification, especially in background noise, is due to arousal-related confusion pat-

terns: 13.3% of samples from hot anger were misclassified as panic, 26.7% as elation—a

confusion pattern also shown in the opposite direction: 16.7% of samples from panic were

misclassified as hot anger, 33.3% for elation (cf. hot anger, panic, and elation in Table 6).

This can be seen more clearly in the NMDS, cf. Fig 7(b), by the overlap between hot anger

and elation in background noise.

Human vs machine: Assessing the two worlds

As the comparison of human vs machine yields similar results for EXP-1 [18] and EXP-2, we

only report it for EXP-2. In Fig 8, the perceptual and classification outcomes are given, display-

ing for ML the best performing model, i. e., MLP with wav2vec2 features trained with data

group D. The average across all SNRs is reported for both perception and classification. Con-

cerning the overall classification, for both perception and classification, a similar UAR is dis-

played across conditions: for humans, UAR = 38.3 in clean, 28.3� UAR�29.7 in background

noise; for machines, UAR = 45.0 in clean, 34.3� UAR�36.5 in background noise; cf. UAR in

Fig 8. In clean condition, a similar trend for humans and machines can be observed (cf. clean

in Fig 8): Sadness is the emotions best identified (61.3 for perception, 66.7 for classification),

pleasure the worst (13.8 for perception, 16.7 for classification); all the others follow the same

trend for humans and ML except for irritation, notably worse classified by machines than by

humans (50.8 for perception, 36.7 for classification). This is due, as discussed in the previous

section, by the confusion pattern between low aroused emotions.

These similarities between perception and automatic classification are more evident when

looking at the NMDS. In Fig 7, we see that without background noise, the three ‘pillars’ in both

constellations, i. e., for human perception (a) and MLP classification (b), are sadness, hot

anger, and elation (cf. Clean in Fig 7). These emotional categories correspond to three distinct

positions in the bi-dimensional space defined by Russel [20]: sadness shows a negative valence

(left side) and low arousal (lower half); hot anger shows a negative valence (left side) and a high

arousal (upper half); elation presents a positive valence (right side) and a high arousal (upper

half). The distinction between these three emotions can also be mapped onto acoustic features,

as observed in [69], in terms of minimum, mean, and maximum fundamental frequency (F0).

The average across the six considered speakers is as follows: Sadness presents lowest values

(99.3, 118.1, and 162.8 Hz), hot anger intermediate (255.1, 282.7, and 380.1 Hz), and elation

highest (259.2, 293.5, and 419.2 Hz). Although these main pillars are clearly preserved for per-

ception also in background noise, cf. Rain in (a), for classification, there is an overlap between

hot anger and elation, which is due to the confusion between these two emotions. This arousal-

related confusion is also shown, to some extent for panic, which is displayed closer to hot anger

and elation in noise background than in the clean constellation, cf. Rain in (b).
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The UAR decline linked to human perception and MLP classification in background noise

(cf. UAR in Fig 8) goes along with an increment in confusion between emotions. This can be

seen in the NMDS by a condensation of the emotions towards the centre for the background

noise; cf. (a) and (b) for Rain in Fig 7. In the confusion matrices, this is indicated by lower pre-

cision as well as by lower recall (apart for sadness in perception and for pleasure in classifica-

tion): cf. precision and recall (in the diagonals) for clean vs rain in Tables 3 and 6. Yet,

especially for the basic emotions anger, sadness, and elation, the ‘cognitive-emotional space’

displayed for human perception and mirrored to some extent in the MLP classification of

clean speech is—despite the condensation—still preserved in background noise. This is shown

by the similarities between the clean constellation and the noisy one for both humans and

MLP: cf. clean vs rain in Fig 7(a) for human perception and in Fig 7(b) for MLP classification.

However, the instability of the ‘weaker’ emotions can be seen for irritation, panicked fear, and

pleasure that are found towards the center and change places for humans and MLP, as seen in

Fig 7(a) vs 7(b).

Fig 8. Recall per class and UAR (in%) for human perception and MLP classifier. The MLP is trained on data group D with wav2vec2 features.

Results are given on EXP-2 considering all SNRs together for the noisy conditions. Mean across conditions (μ) is also given.

https://doi.org/10.1371/journal.pone.0281079.g008
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For evaluating the overall results, the average recall for each emotion across conditions

(clean and noisy) is also given (cf. μ in Fig 8). When considering all the conditions together,

the trend described for the recognition of clean samples generally persists: Sadness is clearly

the emotion best recognised (on average 62.4% for humans, 59.0% for the MLP), pleasure

the worst (on average 7.2% for humans, 20.0% for the MLP). Unlike for human perception

(44.9%), the MLP classification shows a much lower average recall for irritation (30.2%). In

contrast, the average recall for hot anger is much lower for human perception (28.9%) than for

MLP (49.6%). We might speculate that in the case of hot anger, the paradoxical phenomenon

reported in [70] is observed: peak emotions can be maximally ambiguous for humans; this

could explain the lower performance for hot anger and the confusion with irritation, see

Table 3. Obviously, this does not hold for machines.

Discussion and limitations

In this section, we want to take up the metaphor of the five worlds sketched in the introduction

summarising the results and discussing limitations of our approach:

(i) The fuzzy world: The NMDS solutions in Fig 7 demonstrate that the classes used can be

mapped onto dimensions—but, especially for the noisy condition, only for the three ‘pillar’

categories hot anger, elation, and sadness, and not the same way for perception and ML.

This surely relates both to the acoustic ambiguities mentioned passim and by that, to the

limitations of a uni-modal modelling, and especially to the fact that valence is rather indi-

cated with linguistic means. This is a limitation of our approach, due to the choice of keep-

ing as many things equal as possible. What we can conjecture is that the ML confusions for

the ‘weaker’ categories might be based on other criteria than the perceptual ones because it

can be seen in Fig 7 that panic and irritation sort of change places—and do not really repre-

sent their ‘proper’ position on a valence dimension. Reassuring is that the ‘pillars’, i. e., the

basic emotions anger, elation, and sadness, can really be found at the proper positions in

the two-dimensional arousal/valence space, especially for clean speech.

(ii) The closed world: We attempted to model a more open world, i. e., a more realistic sce-

nario where a larger set of emotional classes are known but not explicitly modelled. A fully

realistic approach was, of course, not possible; yet, to the best of our knowledge, this proce-

dure has never been adopted so far in the studies comparing perception and classification

[39, 40, 62]. Our results show that emulating more realistic conditions by introducing

emotional distractors impairs the performance of both humans and machines in a simi-

lar way. This is particularly relevant considering the difference in performance demon-

strated for the ML models when using distractors, which shows that ML is definitely

sensitive to confounding classes (which in real-life scenarios do exist but are not considered

when validating SER systems).

(iii) The clean world: In order to assess how real-life acoustic pollution affects humans’ and

machines’ recognition of emotions from speech, we also introduced a noisy world. This

was done by considering a variety of noises and SNRs from real scenarios. It turned out that

regardless of type (real or artificial), noise impairs human perception and automatic

classification of emotions in speech, increasing the confusion patterns towards low

aroused emotions. Perceptual and ML results show a similar trend: Noise conditions are

affecting similarly, emotions in clean condition are being the best recognised.

(iv) The small world: Due to the difficulties typically associated to the collection and annota-

tion of data for SER, we considered a bigger world: We assessed to which extent the
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performance differences between ‘traditional’ methods and state-of-the-art procedures were

affected by differences in the size of the training data. To carry out a fair comparison, the

optimisation of the considered models for both the traditional and state-of-the-art feature

sets was based on fixed set-ups. In our experiments, the state-of-the-art feature represen-

tations employed, i. e., wav2vec2 embeddings, are trained on large external emotional

databases and show an overall better performance than hand-engineered traditional

audio features. Yet, the disadvantage of wav2vec2 with respect to ComParE is its lack

of interpretability. Furthermore, as shown in [34], our results confirm that the size of the

training set influences the performance of ML models as well. This might be compared to

humans’ capability to identify emotions in speech according to their developmental stage

[24]: More years of experience (emulated by a bigger training set) yield better performance.

(v) The one world: Finally, we investigated the two worlds, i. e., we performed—for the first

time—a one-to-one comparison between humans and ML on the same SER task. Our

results show that, when guaranteeing comparable conditions, similarities between human

and ML on SER can be observed for strong emotion categories; weaker categories, how-

ever, seem to be handled differently. This makes it likely that the performance of SER

systems modelling a few controlled classes in unrealistic scenarios would hardly mirror

human-like emotion recognition. Partially confirming the findings of [40], we showed that

sadness is classified better than all other emotions (except hot anger in clean background)

by the ML system; yet, in contrast to [40], our study confirmed this for listeners’ perception

as well. Finally, one limitation of our study worth to be mentioned is that within a strictly

controlled design, it might be impossible not to use acted nonsense speech.

Conclusion

In this study, we have tried to address four fallacies typical of traditional affective computing

research, which we have introduced with the metaphor of the four worlds: the ‘closed world’,

the ‘clean world’, the ‘small world’ and the ‘one world’. By investigating first the ‘closed’,

‘clean’, and ‘small’ worlds, we were able to evaluate the impact of emotional distractors, envi-

ronmental noise, and framework specificities (feature representations as well as architectures)

in both human perception and ML classification of emotional speech. Through these three

experiments, we systematically assessed the impact of distractor labels, noisy conditions, and

ML aspects (in particular training size and features), which enabled us to define a more fair

set-up. Finally, after the optimal ML set-up was identified, its performance was evaluated for

the clean and most noisy condition in comparison with the perceptual results. Since the previ-

ous knowledge of a human might be, to some extent, comparable to the knowledge of the ML

model acquired by its training on large scale data with distractor labels and noises, the pre-

sented experiments enabled us to perform a systematic one-to-one comparison between

humans and machines, i. e., addressing for the first time the ‘one world’ fallacy.

From our experiments, which tried to emulate a more realistic setup than the one typically

modelled in traditional affective computing, we can say that distractors impair both human

perception and ML classification in a similar way. This is shown especially for sadness, i. e., the

emotion best identified by humans and ML (showing a recall in clean conditions of 61.3% and

66.7%, respectively); this holds in background noise as well (under the strongest noise, i. e.,

rain at -1 dB SNR, sadness shows a recall of 65.7% and 63.3% for perception and ML, respec-

tively). Besides the role of distractors in creating confusion amongst emotional categories, the

parallels between perception and classification is also observed in general for the impact of

noise: Considering all the SNRs together, the UAR is comparable amongst noises for both
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perception (28.3� UAR�29.7) and ML (34.3� UAR�36.5). Furthermore, state-of-the-art

methods such as wav2vec2, due to the large amount of data used in the model training, per-

form better than traditional representation, such as acoustic hand-engineered features for

which no training data is required during feature extraction. In preliminary experiments, we

also employed DL architectures, such as Long Short-Term Memory Recurrent Neural Net-

works, along with those herein discussed; however, these resulted in lower and unsystematic

performance, most likely due to the low size of the training partitions. wav2vec2 can partly

circumvent this problem because it is based on a very large dataset modelling the linguistics

and the phonetics of spoken language. Obviously, this helps for sparse datasets as well. This

is shown by our results, where on average, across conditions and architectures, the UAR

achieved with wav2vec2 features was 31.4% while the one for the hand-engineered Com-
ParE features was 25.2%. The high impact of using a large training set is further confirmed by

the performance of wav2vec2 with SVM, yielding a marked difference (p = .017) in the UAR

achieved with a small dataset (for data group A, UAR = 26.7%) with respect to a large one (for

data group D, UAR = 35.8%).

We do not claim to have solved the riddles of all the constrained worlds addressed; yet, we

hope to have contributed towards widening the scope. We believe that the use of procedures

similar to the ones presented should be considered in the future in order to more adequately

evaluate the real potential of an SER system, by this guaranteeing more felicitous human-com-

puter interactions. A further task to be addressed is a deeper evaluation of the specific acoustic

features that might be more suitable in mirroring the confusion patterns across emotions

shown by listeners’ perception. Needless to say, uni-modal modelling has to be complemented

by multi-modal modelling, and especially by linguistics; yet, this might be rather complex, if

really controlled scenarios are targeted. In our uni-modal modelling, we concentrated on spe-

cific short-comings of emotion modelling, employing traditional concepts such as the big

emotion classes and the two ‘big’ dimensions. Of course, eventually this has to be substituted

with richer, more fine-grained models. It remains to be seen whether and how DL-based mod-

els can be optimised for the use of sparse training data.
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3. Batliner A, Fischer K, Huber R, Spilker J, Nöth E. Desperately seeking emotions or: Actors, wizards,

and human beings. In: Proc. of ITRW. Newcastle, Northern Ireland, UK; 2000. p. 195–200.
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38. Batliner A, Steidl S, Hacker C, Nöth E. Private emotions vs. social interaction — a data-driven approach

towards analysing emotions in speech. User Modeling and User-Adapted Interaction. 2008; 18:175–

206. https://doi.org/10.1007/s11257-007-9039-4
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