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ABSTRACT

Automatic music tagging systems have once more

gained relevance over the last years, not least through their

use in applications such as music recommender systems.

State-of-the-art systems are based on a variant of convo-

lutional neural networks (CNNs) and use some type of

time-frequency audio representation as input, in a fitting

combination, to predict semantic tags available through

expert or crowd-based annotation. In this work we sys-

tematically compare five widely used audio input repre-

sentations (STFT, CQT, Mel spectrograms, MFCCs, and

raw audio waveform) using five established convolutional

neural network architectures (musicnn, VGG-16, ResNet,

a squeeze and excitation network (SeNet), as well as a

newly proposed musicnn variant using dilated convolu-

tions) for the task of music tag prediction. Performance

of all factor combinations are measured on two distinct

tagging datasets, namely MagnaTagATune and MTG Ja-

mendo. A two-way ANOVA shows that both input repre-

sentation and model architecture significantly impact the

classification results. Despite differently sized input repre-

sentations and practical impact on model training, we find

that using STFT as input representations provides the best

results overall. Furthermore, the proposed dilated convolu-

tional architecture shows significant performance improve-

ments for all input representations except raw waveform.

1. INTRODUCTION

Music tagging is a multi-label classification task to pre-

dict semantic high-level tags like ªrockº, ªpianoº or ªfastº

for music pieces. As for many music information retrieval

(MIR) tasks, deep learning has become the state-of-the-art

for music tagging [1]. Specifically, CNNs have provided

the best results for this task, using either types of audio

spectrograms or raw waveform as network input [2, 3].

The selection of audio input representations for neural

networks is often decided heuristically or by falling back to

standard spectrograms and usually not evaluated [4]. How-

ever, the choice of input representation can have a signif-
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icant impact on performance, as shown in other tasks like

natural language processing (NLP), justifying also an eval-

uation of different representations [5].

While existing work compares different aspects of neu-

ral network architectures and input representations (see

section 2), an evaluation of their interplay is missing. In

this work, as our first contribution, we systematically com-

pare five different architectures and five different input

representations in a full-factorial design. The baseline

architectures are: (i) VGG-16 [6], (ii) ResNet [7], (iii)

SENet [8], (iv) musicnn [9], and (v) a musicnn architec-

ture with dilated convolutional layers. Five different input

representations are tested on each of those architectures:

(i) raw waveform, (ii) short time Fourier transformation

(STFT), (iii) Mel spectrogram, (iv) Mel frequency cepstral

coefficients (MFCCs), and (v) constant-Q transformation

(CQT) [2, 3, 10]. All experiments are repeated on two dif-

ferent datasets and a statistical analysis is used to test if

differences of results are significant.

Through this extensive evaluation, we can state that our

second contribution is the introduction of dilated convolu-

tional layers in a music tagging network architecture (mu-

sicnn). This observed improvement can be related to the

fact that the dilated layers allow for a large receptive field

when only using a limited amount of layers, cf. [10].

Next, in section 2, we review related work, followed

by an outline of the five input representations, five neural

network architectures, and datasets used in section 3. Sec-

tion 4 describes the experimental setup, training, and eval-

uation strategy and presents the statistical evaluation and

significance analysis of the results. Finally, conclusions on

the results and findings are drawn in section 5.

2. RELATED WORK

In [2], the authors evaluate state-of-the-art CNN models

for music auto-tagging either by using the audio waveform

or Mel spectrogram as input representations. MagnaTa-

gATune (MTAT), Million Song dataset (MSD), and MTG-

Jamendo (MTGJ) serve as datasets for training and eval-

uation. Among others, the study considers the following

model architectures: A fully convolutional network, mu-

sicnn (cf. section 3.2.4), a Sample-Level CNN to process

raw waveforms using squeeze- and excitation blocks (cf.

section 3.2.3), a convolutional recurrent neural network, as

well as a self-attention based approach using an adaptation

of the transformer architecture. Furthermore, the work fo-
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cuses on effects of data augmentation like pitch shifting or

time stretching to improve generalization abilities. Note

that while we follow a similar strategy wrt. evaluated ar-

chitectures in our work, we focus on the impact of different

input representations on these different architectures and

evaluate their interplay.

More recently, transformer networks have been applied

for music tagging [11,12]. While these models improve the

state-of-the-art performance, they are significantly more

complex than plain convolutional models. Therefore, we

consider them not a good match for the evaluation in

this work. Other deep learning techniques like transfer-

learning, data augmentation, and model aggregation which

have been used in music tagging [13], are mainly model

agnostic and can be applied on top of any input represen-

tation and model combination.

In [14], the authors tested the effect of training data

size for music tagging. They trained models with dataset

sizes ranging from 100k to 1.2 million training instances

using the private 1.2M-Songs dataset. Two CNN archi-

tectures are used, one for raw waveforms and a second

one for Mel spectrograms inputs. The Mel spectrogram-

based model outperformed the raw waveform-based model

in both datasets on all tested configurations, which encour-

aged the conclusion that domain knowledge can be benefi-

cial for designing model architectures.

Using dilated convolutions has shown promising results

in image segmentation- and classification over the last few

years [15±17]. A similar trend can be observed for the au-

dio domain [18±21]. Dilation can be used to increase the

receptive field using only a few layers, which can be bene-

ficial for tasks focusing on global properties of the input.

In [22], the authors use dilated convolutions for envi-

ronmental sound classification. This task (similarly to mu-

sic tagging) requires an architecture with a large receptive

field. Previously this was achieved by using very deep

CNNs. The evaluation shows performance improvements

of up to 10% on different datasets compared to existing

deep CNNs while reducing model size.

In [4], the authors compare the effects of several audio

preprocessing methods for music auto-tagging when using

a CNN. For this, the same neural network was trained on

the MSD using either STFT or Mel spectrogram as input

representations. The evaluation shows no significant dif-

ferences in performance for the two input representations.

However, using log-compressed magnitude spectrograms

showed a significant performance increase for all tested

configurations.

A more comprehensive comparison of spectrogram rep-

resentations for audio was conducted in [10] in the con-

text of environmental sound classification. Different con-

figurations for STFT, Mel spectrogram, CQT, continuous

wavelet transform, and MFCCs were evaluated in the ex-

periments, using different CNN configurations for train-

ing. The evaluation shows that in nearly all configurations,

shallower CNN models outperformed deeper ones. The

authors suspect that overfitting of the deeper model is the

cause of this. The results also show that Mel spectrograms

performed consistently well, while STFT and CQT did not,

while MFCCs performed worst.

The effects of the reduction of frequency and time res-

olution of Mel spectrograms for CNN architectures in the

context of music auto-tagging were investigated in [23].

Two different state-of-the-art CNN architectures served as

a reference for the comparison of Mel spectrograms with

different frequency and time resolutions. The results show

that while reducing the frequency bands from 128 to 48,

the performance loss was negligible.

3. METHOD

This section covers the description of the input representa-

tions as well as the neural network architectures used in the

evaluation. The experiments are implemented in Python,

using librosa 1 for audio processing and TensorFlow as

deep learning framework. The source code is available

online, refer to the source code for all implementational

details 2 , there are also additional figures on the accompa-

nying website 3 .

3.1 Input Representations

In the following section, the used input representations

are discussed and parameter settings are provided. In this

work, standard parameter settings established in the litera-

ture are used. Figure 1 visualizes the 2D input representa-

tions using a 10s audio snippet.

3.1.1 Raw Waveform

In the context of this work, the audio material is resam-

pled to 16kHz mono. This is used consistently also for

the source of all spectrograms. As waveform input repre-

sentation, 16kHz mono 32bit float pulse-code modulation

(PCM) data is used.

3.1.2 STFT

A STFT is calculated by repeatedly applying a discrete

Fourier transformation (DFT) to small frames of the au-

dio signal. As a baseline spectrogram, in this work, the

librosa STFT with default parameters is used: frame size

of 2 048 at 16kHz, a hop length of 512, and a Hann window

function.

3.1.3 Mel Spectrogram

A usual modification to plain spectrograms is to use

psychoacoustically-motivated frequency scales. A com-

mon choice is the Mel scale, which has a logarithmic char-

acteristic. In this work, 96-frequency-bin Mel spectro-

grams are used. A minimum frequency of 32Hz and 12

bins per octave are used. These or similar values are con-

sistently used throughout the literature [23].

3.1.4 MFCC

MFCCs are a compact representation reducing the fre-

quency dimension of the Mel spectrogram using the dis-

crete cosine transform (DCT). MFCCs have been success-

fully applied in speech recognition and to some extend

1 https://librosa.org
2 https://gitlab.com/MaxDamb/dl-autotagging
3 https://tinyurl.com/ismir22-317
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Figure 1. Different 2D input representations, from left to right: STFT, Mel spectrogram, CQT, and MFCC

also in MIR. The resulting coefficients describe the over-

all shape of the spectrogram columns [24]. Often the first

20 coefficients are used, which is also the default value in

librosa, and therefore used in this work.

3.1.5 Constant-Q Transformation

Similar to the DFT, the CQT can be used to extract a

time-frequency representation. The CQT results in a log-

frequency scale and needs no further frequency transfor-

mation to match human audio perception. It is calculated

similar to the STFT but enforces a constant ratio of the cen-

ter frequency to resolution (constant-q) [25]. All parame-

ters are chosen equal to comparable parameters of the Mel

spectrogram: hop size 512, minimum frequency 32Hz, 12

bins per octave, and 96 frequency bins,

3.2 Network Architectures

In this section the five CNN architectures used for

the experiments are discussed. Whenever kernel sizes

are discussed, e.g. 3x3 filter kernels, these refer to

two-dimensional inputs and imply 3(x1) filters for one-

dimensional inputs. For more implementational details

please refer to the original works, or the source code of

the implementations.

3.2.1 VGG-16

The VGG-16 architecture introduced in [6] is used as a

CNN baseline in this work. It consists of five convolutional

blocks, each with 2-3 convolutional layers with 3x3 kernels

and max-pooling with 2x2 kernels, followed by fully con-

nected (FC) output layers. For each block the number of

channels increases: 64, 128, 256, 512, and 512. For the FC

layers (4 096 neurons each) the flattened output of the last

convolutional block is used as input. Finally 50 sigmoid

neurons form the output layer responsible for predicting

the tags [6]. ReLU is used as an activation function for all

hidden layers, and dropout- and batch-normalization layers

are added after each block for regularization.

3.2.2 ResNet

Generally speaking, deeper networks have more process-

ing power, but at the same time are harder to train because

of the vanishing gradient problem. Residual networks im-

plement so-called skip connections which are a solution to

this problem and allow to train deeper networks [7]. A skip

connection is a shortcut that adds the input to the output of

a convolutional block or layer.

In this work, the ResNet-101 architecture (101 convolu-

tional layers) [7] is used and reimplemented in TensorFlow.

The basic building block is a bottleneck which consists of

three convolutional layers (1x1, 3x3, 1x1) and a skip con-

nection from the input to the output of the block. The 1x1

layers reduce the input dimensions by a quarter for the 3x3-

layer and increase it again afterwards, which is done to re-

duces the memory footprint of the network. After the first

convolutional layer (7x7) to downsize the input, the archi-

tecture consists of 3 blocks with 64 channels, 4 with 128,

23 with 256, and 3 blocks with 512 channels, followed by

the sigmoid output layer.

3.2.3 Squeeze and Excitation Network

This architecture is based on the sample-level CNN ar-

chitecture proposed in [26]. It uses one-dimensional raw

audio-data as input. A basic block consists of a convo-

lutional layer (3x3), followed by batch-normalization and

max-pooling (2x2 for 2D and 3 for 1D). After that, the

squeeze and excitation (SE) part is applied. The squeeze

operation consists of a global average pooling to com-

press each channel. The excitation operation consists of

two fully-connected layers (ReLU, sigmoid). Finally, the

output of the basic convolutional part gets scaled with the

output of the SE part by channel-wise multiplication. The

squeeze and excitation network (SENet) consists of nine of

these blocks, where the outputs of the last three blocks are

max-pooled globally and concatenated to serve as input for

two FC output layers, which use sigmoid outputs [26].

To make this architecture work for 2D input representa-

tions the frequency dimension is reduced gradually using

2D filters throughout the network.

3.2.4 Musicnn

Musicnn is a CNN designed specifically for music tag-

ging and has been re-implemented and slightly adapted

for this work. The original architecture uses Mel spec-

trograms with a length of three seconds and 96 Mel-bins

as input [9]. The architecture is divided into three parts:

frontend, midend, and backend. The frontend uses one

convolutional layer with different kernel sizes motivated

by music-domain knowledge. In the original work, 7x38,

7x67, 128x1, 64x1 and 32x1 filters are used. These filters

are scaled relatively to the size of the frequency dimen-
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Figure 2. Dilated CNN frontend architecture for 2D-input

sion for the other input representations used in this work.

For the one-dimensional input, the frontend architecture

from [14] is used, consisting of seven 3x1 convolutions,

combined with max-pooling layers. The midend consists

of three convolutional layers (7xN kernels) supposed to

extract higher-level representations from the low-level fea-

tures of the frontend. In the original work, midend and

frontend layers are connected by summation of each in-

put with the previous outputs (quasi-residual connections,

inspired by dense connections [27]). The output layer con-

catenates all previous layers of the midend. The backend

uses temporal pooling for the final output. It combines

average- and max-pooling over the time dimension of the

output of the midend, concatenates their outputs and then

uses two dense-layers with sigmoid outputs for the final

prediction [14].

3.2.5 Dilated CNN

This section presents an extension of the musicnn using

dilated convolutions in the frontend. Dilated convolutions

spread out the filters over a wider area, thus achieving

a larger receptive field without increasing resource con-

sumption [21, 28, 29]. As discussed in the introduction, a

large receptive field is desirable since music tags depend on

global properties of the audio signal. Figure 2 displays the

architectural layout of the frontend for the dilated CNN.

Three convolutional layers are used to extract temporal fea-

tures, while four layers span the frequency axis. Then, all

outputs are concatenated and serve as input for the midend.

Convolutions in the first block have 26 channels and 51 in

the second one. As described for the stacked dilated con-

volution block in [29], the outputs are concatenated after

the first block of convolutions and are used as input for the

second block.

For the one-dimensional input, the musicnn frontend

was adapted differently. It consists of seven sequential

stacked dilated convolutions to reduce the input size suffi-

ciently. Each of those blocks consists of four parallel con-

volutions stacked in two blocks, as displayed in Figure 3.

3.3 Datasets

The two music tagging datasets used in this work

are: MagnaTagATune (ºMTATº) [30] and MTG-Jamendo

(ºMTGJº) [31]. Both these datasets contain tags be-

longing to the three categories ºgenreº, ºinstrumentº and

ºmoodº identified relevant for the tag grouping in this work

[32, 33].

Input

Conv1
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Kernel: 3

Dilation: 2

Conv3

Kernel: 3

Dilation: 3

Conv1

Pool: 3

Conv2 Conv3

Pool: 3

Conv4
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Pool: 3

Concat

Concat

Pool: 3

Figure 3. Dilated CNN block for frontend for 1D-input

3.3.1 MagnaTagATune

The dataset was created using the game-with-a-purpose

called TagATune [30, 34]. MTAT consists of 5 223 songs,

segmented into 25 863 song-snippets with a length of 29

seconds. Each snippet comes with associated tags from

a set of 188 tags. Some of the tags in the dataset are

synonyms for each other, therefore similar tags such as

ºchoirº and ºchoralº or ºhornº and ºhornsº are merged.

Since some tags only yield an insufficient number of train-

ing examples, only the top 50 tags by occurrence are used,

which is a common practice [26, 35, 36]. This results in

17 genre-, 22 instrument-, 9 mood- and two uncategorized

tags. To be consistent on the two datasets, a 60:20:20

train/validation/test data split is used. When generating the

splits, snippets of the same song are always put in the same

split to counteract overfitting.

3.3.2 MTG-Jamendo

MTGJ consists of royalty-free music, and contains 55 709

full-length songs from 3 565 different artists. Every song

is at least 30s in length and 224s on average, resulting

in 3 777 hours of audio. In order to be consistent with

the MTAT, only the first 29s of each audio segment are

used, which reduces training- and test-data size. In total,

there are 195 different tag annotations for each song, each

belonging to one of the three categories ºgenreº, ºinstru-

mentº, or ºmoodº. The set of tags has already been cleaned

up and does not contain tags with the same meaning [31].

The distribution of the number of examples per tag is com-

parable to MTAT. Again, only the top 50 most frequent

tags are used for the experiments, which is consistent with

the literature [31]. There are 31 genre-, 14 instrument- and

5 mood-tags. For train-, validation, and test-splits, the first

split definition from the dataset repository is used [31].

The split ratios are approximately 60:20:20. The split

definition ensures that tracks of the same artists are only

present in one subset and that tags, tracks, and artists are

equally distributed.

4. EVALUATION

4.1 Experiment Setup

For each combination of network architecture, input rep-

resentation, and dataset, a model is trained and evaluated.

For MTAT seven runs with random initialization, and for

MTGJ five runs are performed and results are averaged

over the runs. As evaluation criteria ROC-AUC was used
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MTAT MTGJ

Figure 4. ROC-AUC scores for input representations and architectures on MTAT and MTGJ.

[35]. For training, early stopping was applied: training is

stopped as soon as no further improvement on the valida-

tion split is achieved. As optimizer, ADAM in combination

with a simple learning-rate schedule was used. Because

of the smaller size of MTAT, additional refinement using

stochastic gradient descent (SGD) with a reduced learning

rate (1/5) was performed [37].

4.2 Results and Statistical Analysis

Figure 4 displays the ROC-AUC scores for the seven

runs on MTAT (left) and the five runs on MTGJ (right)

of input and architecture combinations. Different colors

represent architectures, additionally, the average perfor-

mance per input representation is shown in brown. The

results for MTAT are on-par with state-of-the art results:

dil_cnn+STFT: 0.915 v.s. 0.913 in [2]. For MTGJ, results

are slightly below state-of-the-art (0.793 v.s. 0.832 in [2]),

however, for compatibility reasons with MTAT in this work

only 29s of each track are used v.s. full tracks in [2].

A two-way ANOVA is used to check if network archi-

tecture and/or input representation have a significant in-

fluence on the performance. Assumptions for ANOVA

(independence and homoscedasticity of observations, nor-

mal distribution of residuals) are ensured: Since each run-

configuration uses a different architecture and input rep-

resentation combination, independence of observations is

given. Homoscedasticity (equality of variances) of values

is checked using the Levene test which indicates that this

assumption is not met for MTAT. Therefore, a data trans-

formation is applied to the result values on MTAT, which

was not necessary for MTGJ. Residuals are found to be ap-

proximately normally distributed, which satisfies the last

assumption [38].

Table 1 displays the results for the two-way ANOVA

analysis. The p-values for the input representation and the

architectures individually as well as combined indicate a

strong influence on the performance. Due to the data trans-

formation, the sum of squares (SS) and the mean squares

(MS) for MTAT are not interpretable.

Tukey-HSD tests are used to check for significant dif-

ferences of mean values between individual input represen-

tations as well as network architectures on both datasets.

Table 2 shows the results with and without the data trans-

formation to see absolute difference between groups while

MTAT DF SS (E+10) MS (E+10) F P

input 4 2.83 70.8 57.64 <1E-5

arch. 4 31.6 7.89 642.13 <1E-5

input&arch. 16 15.1 94.5 76.86 <1E-5

residual 150 1.84 123

MTGJ DF SS (E-5) MS (E-5) F P

input 4 800 200 63.61 <1E-5

arch. 4 2600 650 205.51 <1E-5

input&arch. 16 1010 60 20.04 <1E-5

Residual 100 320 3.16

Table 1. Two-way ANOVA results on MTAT and MTGJ.

SS is sum of square, MS is mean square, DF is degrees of

freedom, F is f-value, and P the p-value.

diff (t) p-value (t) diff p-value

MEL-CQT 13926.88 4.92E-06 0.0068 5.11E-07

MFCC-CQT 222.24 1.0000 -0.0013 0.8135

RAW-CQT -17197.21 1.18E-08 -0.0044 0.0024

STFT-CQT 19305.97 1.69E-10 0.0074 4.22E-08

MFCC-MEL -13704.64 7.21E-06 -0.0080 2.05E-09

RAW-MEL -31124.09 0.0000 -0.0112 2.85E-14

STFT-MEL 5379.09 0.2569 0.0006 0.9869

RAW-MFCC -17419.45 7.63E-09 -0.0031 0.0651

STFT-MFCC 19083.73 2.68E-10 0.0086 1.35E-10

STFT-RAW 36503.18 0.0000 0.0118 3.12E-14

Table 2. Tukey-HSD ROC-AUC results for input repre-

sentations on MTAT with transformations (t) and without.

being able to validate or reject those results. The over-

all worst performing input representation is the raw wave-

form. It is 0.44% worse than the CQT transformation with

a p-value of 0.0024 and significantly worse for the trans-

formed input with a p-value of 1.18e-08. Compared to the

MFCCs, the raw waveform performs 0.0031% worse, but

with a p-value of 0.0651, so this difference is insignifi-

cant for the untransformed input. However, with the trans-

formed input, there is a strong significance with a p-value

of 7.63e-09 that the MFCCs outperform the raw wave-

form to an equal extent as the CQT transformation does.

Comparing the MFCCs with the CQT transformation, nei-

ther of both outperforms the other for the transformed

input and the untransformed with very high p-values of

1.00 and 0.8135. As displayed before in Figure 4, the

former performs better in combination with all architec-
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tures except for the VGG-16 model than the latter, where

it shows a very poor performance compared to all other

input representations. Mel spectrograms in average per-

form 0.8% better than MFCCs with a p-value of 2.05e-09

and 0.68% better than the CQT transformation with a p-

value of 5.11e-07. These strong significance levels are also

validated with the transformed inputs. There is no signifi-

cant difference between the Mel spectrogram and the STFT

with high p-values of 0.9869 and 0.2569 for untransformed

and transformed inputs, respectively.

diff (t) p-val (t) diff p-value

musicnn-dil_cnn -4834.96 0.3634 -0.0005 0.9938

resnet-dil_cnn -84812.56 0.0000 -0.0269 0.0000

senet-dil_cnn -78691.83 0.0000 -0.0243 0.0000

vgg16-dil_cnn -100118.83 0.0000 -0.0370 0.0000

resnet-musicnn -79977.60 0.0000 -0.0264 0.0000

senet-musicnn -73856.87 0.0000 -0.0238 0.0000

vgg16-musicnn -95283.87 0.0000 -0.0365 0.0000

senet-resnet 6120.73 0.1475 0.0026 1.93E-01

vgg16-resnet -15306.27 4.24E-07 -0.0101 1.32E-13

vgg16-senet -21427.00 1.95E-12 -0.0127 1.54E-14

Table 3. Tukey-HSD ROC-AUC results for network archi-

tectures on MTAT with transformations (t) and without.

Table 3 shows the results for the Tukey-HSD range test

on the different architectures. VGG-16 performs signif-

icantly worse than all other models. On average, it per-

forms 1.01% worse than ResNet and 1.27% worse than

SENet with p-values of < 1e − 06 for both transformed

and untransformed scores. There is no significant differ-

ence between the latter two because the p-value is 14.75%

for the transformed input. Musicnn and the dilated CNN

significantly outperform all other models with > 2.4% dif-

ference. As already discussed previously, there is no sig-

nificant difference between those two architectures with p-

values of 99.38% and 36.34% for untransformed and trans-

formed scores, respectively.

The results on MTGJ have been found to be consistent

with those on MTAT, due to space restrictions, the tables

are only available on the accompanying website. For audio

representations, the raw waveform again performs worse

than all other inputs, but now the significance for MFCCs

outperforming the raw waveform is much stronger, with a

p-value of 8.22e-05 for having a 0.75% higher ROC-score.

On average, the Mel spectrogram significantly performs

0.85% better than the MFCCs, and the CQT transforma-

tion performs 1.1% better than the latter. In contrast to

the previous dataset, the Mel spectrogram and the CQT

transformation perform equally well. The STFT performs

0.62% better than the Mel spectrogram. However, the per-

formance difference between STFT and CQT is not statis-

tically significant, with a p-value of 0.1472.

Regarding architectures, there is no significant differ-

ence between the musicnn and the dilated CNN, which

perform best overall. VGG-16 performs worse than other

architectures, followed by ResNet and SeNet.

Additionally, the same evaluation is performed sepa-

rately for the three tag categories ºgenreº, ºinstrumentº

and ºmoodº. The motivation for this is the assumption that

tag categories may depend on different properties of mu-

sic which might be captured differently by individual input

representation and network architecture combinations. On

MTAT the results for genre and instrument are compara-

ble to the overall results, while for mood the MFCC input

representation performed surprisingly well, however, this

could not be reproduced on MTGJ. Due to space restric-

tion the detailed results are not provided here, but can be

obtained on the accompanying website.

4.3 Discussion

The evaluation shows that both architecture and input rep-

resentation significantly impact the classification results

during all experiments. The STFT provides the best over-

all results on almost all tested configurations. This comes

to the price of higher resource consumption due to the

larger size of this input representation. Raw waveforms

show the worst results on all configurations which might be

because the architectures are originally designed for two-

dimensional inputs and are adapted. Despite their small

size, MFCCs perform well across almost all architectures,

so they might be a good choice for tasks requiring low re-

source consumption. Mel spectrograms show solid per-

formances across all architectures but are still significantly

worse than the STFT. However, due to their around ten

times smaller size, they are much less resource-consuming

which might be the reason why they are a commonly used

input representation. The dilated CNN significantly out-

performs the original musicnn on two-dimensional input

representations and performs worse on the raw waveform.

On MTAT the CQT transformation has the second-

worst results but on MTGJ it performs equally well as

the STFT. Therefore, no general conclusion can be drawn

about the performance of this input representation which

is comparable in terms of size to the Mel spectrogram.

The evaluation on individual tag categories was inconsis-

tent between the two datasets making further conclusions

difficult. For genre tags, similar results can be observed on

MTAT and MTGJ, but there is no particular trend identifi-

able compared to the evaluation across all tags. The results

suggest that mood classification differs the most from the

other tag categories. For example, MFCCs perform the

second-worst for genre- and instrument classification but

the second-best on mood tags. However, this was not the

case for MTGJ, where MFCCs only show slightly better

results than the raw waveform.

5. CONCLUSIONS

In this work, five CNN architectures and five input rep-

resentations have been evaluated on two commonly used

music tagging datasets. A thorough statistical analysis of

the results, identifies significant performance differences

between all combinations, where the combination of STFT

inputs and the newly introduced dilated variant of the mu-

sicnn performs best. The evaluation on tag categories does

not yield any consistent trends, but points to some interest-

ing hypothesis, e.g., that for mood tags compressed input

representations like MFCC might be sufficient.
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